1. Cho tam giíac ABC nhọn, kẻ DE//BC (D thuộc AB, E thuộc AC).
a) CMR tam giác ABC đồng dạng tam giác ADE
b) Cho biết AB=15cm, BC=20cm, DE=12cm. Tính AD, BD.
c) Trên BC lấy điểm F sao cho CF= 12cm. Chứng minh tam giác DBF đồng dạng tam giác ABC
2. Cgo tam giác ABC có AB=6cm, AC= 8cm, BC= 10cm, vẽ đường cao AH.
a) CM: AB2= BC.BH
b) CM: tam giác HBA đồng dạng tam giác HAC.
c) CM: tam giác ABC vuông
d) Vẽ đường phân giác AD. Tính DB, DC
Câu 2:
c: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nen ΔBAC vuông tại A
a: Xet ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)(hệ thức lượng)
b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\)
Do đó: ΔHBA\(\sim\)ΔHAC