1) Cho P = \(\frac{x}{1+x^2}\) + \(\frac{y}{1+y^2}\) + \(\frac{z}{1+z^2}\). Khẳng định nào đúng :
A. P >= 3/2 B. P >= 3 C. P<=1 D. P<=3/2 (Giải cụ thể ln nka)
2) Tìm GTNN của :
a) \(\frac{1}{x}\) + \(\frac{4}{y}\) với x + y = 5 (x, y ko âm)
b) \(x\sqrt{1-x^2}\)
3) Cho y = \(x^2+\left(2m+1\right)x+m^2-1\). Tìm m để biểu thức đạt GTNN = 1 trên khoảng [0;1]
4) Cho A(1;-2), B(2;3). Tìm tung độ điểm C để chu vi tam giác ABC nhỏ nhất
1. Ta có \(1+x^2\ge2x\), \(1+y^2\ge2y\), \(1+z^2\ge2z\)
Suy ra \(P=\frac{x}{1+x^2}+\frac{y}{1+y^2}+\frac{z}{1+z^2}\le\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{3}{2}\)
Chọn D. \(P\le\frac{1}{2}\)
2. a) Áp dụng BĐT Bunhiacopxki, ta có
\(\left(\frac{1}{x}+\frac{4}{y}\right)\left(x+y\right)\ge\left[\left(\sqrt{\frac{1}{x}.x}\right)^2+\left(\sqrt{\frac{4}{y}.y}\right)^2\right]=\left(1^2+2^2\right)\)
\(\Rightarrow\frac{1}{x}+\frac{4}{y}\ge1\)
Đẳng thức xảy ra khi \(\left\{\begin{matrix}\frac{1}{x^2}=\frac{4}{y^2}\\x+y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{\begin{matrix}x=\frac{10}{3}\\y=\frac{5}{3}\end{matrix}\right.\)
2.b
\(\left|x\right|.\sqrt{1-x^2}=\sqrt{x^2\left(1-x^2\right)}\le\frac{x^2+1-x^2}{2}\)
\(\Rightarrow\left|x\right|\sqrt{1-x^2}\le\frac{1}{2}\)
hay \(-\frac{1}{2}\le x\sqrt{1-x^2}\le\frac{1}{2}\)
Bạn tự tìm được rồi nhé :)