Bài 8: Vị trí tương đối của hai đường tròn (Tiếp)

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
sumin

1) Cho (I;2cm) (O) đường kính 8cm tiếp xúp tại C, AB là tiếp tuyến của hai đường tròn. Tính tứ giác ABOI

2) Cho (O;3cm)(I;1cm) tiếp xúp tại C tiếp tuyến chung AB của hai đường tròn cắt OI tại M. Tính MC

3) Cho (O;12cm)(O'16cm) chát nhau tại A và B sao cho OA là tiếp tuyến của đường tròn (O'). Tính dây AB

HT.Phong (9A5)
8 tháng 1 lúc 8:58

Do AB là tiếp tuyến chung của (O) và (I) nên: 

\(\left\{{}\begin{matrix}\widehat{IBA}=90^o\\\widehat{OAB}=90^o\end{matrix}\right.\) (tiếp tuyến vuông góc với bán kính) 

\(\Rightarrow\left\{{}\begin{matrix}IB\perp AB\\OA\perp AB\end{matrix}\right.\)

\(\Rightarrow IB//OA\) (cùng vuông góc với AB) 

\(\Rightarrow ABOI\) là hình thang 

Ta kẻ IE vuông góc với OA tại E 

⇒ IEAB là hình chữ nhật 

⇒ \(IB=AE=2\left(cm\right)\) (cặp cạnh đối của hình chữ nhật) 

\(\Rightarrow OE=OA-AE=8-2=6\left(cm\right)\) 

Mà: \(OI=OC+IC=2+8=10\left(cm\right)\) 

Xét ΔIEO vuông tại E áp dụng định lý Py-ta-go ta có: 

\(IO^2=OE^2+IE^2\)

\(\Leftrightarrow10^2=6^2+IE^2\)

\(\Leftrightarrow IE=\sqrt{100-36}=\sqrt{64}\)

\(\Leftrightarrow IE=8\left(cm\right)\)

Mà: \(AB=IE=8\left(cm\right)\) (ABIE là hình chữ nhật) 

Diện tích của tứ giác ABOI có AB là đường cao là:

\(S_{ABOI}=\dfrac{\left(IB+OA\right)\cdot AB}{2}=\dfrac{\left(2+8\right)\cdot8}{2}=40\left(cm^2\right)\)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
I LOVE BTS
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lưu Nguyễn
Xem chi tiết
Chibi Sieu Quay
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Ngọc Nhã Hân
Xem chi tiết