1. cho hình thang ABCD (AB//CD). gọi E, F lần lượt là trung điểm của BD và AC.
a) c/m EF//CD
b) c/m EF = \(\dfrac{CD-AB}{2}\)
2. tìm GTNN của
b) B = x2 - 3x + 5
c) C = x2 -x+6
d) M = 4x2 -4x +4
e) N = x2 -x
3. c/m rằng a=b=c nếu có một trong các điều kiện sau
a) (a+b+c)2 = 3(a2 + b2 + c2)
b) (a+b+c)2 = 3(ab+bc+ca)
Bài 2,
\(B=x^2-3x+5\)
\(=\left(x^2-3x+\dfrac{9}{4}\right)+\dfrac{11}{4}\)
\(=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\forall x\)
Vậy : Min B = \(\dfrac{11}{4}\) khi \(x-\dfrac{3}{2}=0\Rightarrow x=\dfrac{3}{2}\)
\(c,x^2-x+6=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{23}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{23}{4}\ge\dfrac{23}{4}\forall x\)
vậy Min C = \(\dfrac{23}{4}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
\(d,M=4x^2-4x+4=\left(4x^2-4x+1\right)+3\)
\(=\left(2x-1\right)^2+3\forall x\)
vậy Min M = 3 khi \(2x-1=0\Rightarrow x=\dfrac{1}{2}\)
\(e,x^2-x=\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{1}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\forall x\)
vậy Min N = \(-\dfrac{1}{4}\) khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)