a)
TH1 : x<1
\(\Rightarrow\left|2x-6\right|+\left|2x-2\right|=6\\ \Leftrightarrow-2x+6-2x+2=6\\ \Leftrightarrow-4x=-2\\ \Leftrightarrow x=\dfrac{1}{2}\)
TT : Xét TH 2 ; 1<=x<3
TH 3 : x>=3
b)
Áp dụng BĐT : \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\left|2x-6\right|+\left|2x-2\right|=\left|6-2x\right|+\left|2x-2\right|\\ \ge\left|6-2x+2x-2\right|\\ =4\)
Min A = 4 khi \(1\le x\le3\)