Đại số lớp 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Huyền Thụn

1, Cho các số dương x,y,z,t

T/M. y2 = xz , x2 = yt

C/M. \(\dfrac{x^3+y^3+z^3}{y^3+z^3+t^3}\) = (\(\dfrac{x}{t}\))3

 Mashiro Shiina
17 tháng 8 2017 lúc 21:51

\(y^2=xz;x^2=yt\)

\(\Rightarrow\dfrac{x}{y}=\dfrac{y}{z};\dfrac{x}{y}=\dfrac{t}{x}\)

\(\Rightarrow\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}\)

Đặt:

\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{t}{x}=k\) \(\Rightarrow\left\{{}\begin{matrix}x=yk\\y=zk\\t=xk\end{matrix}\right.\)

Thay vào tính

Sakura Nguyen
17 tháng 8 2017 lúc 22:14

Theo đề bài đã cho, ta có:
\(y^2\)=xz => \(\dfrac{x}{y}\)=\(\dfrac{y}{z}\) (1)
\(z^2\)=yt => \(\dfrac{y}{z}\)=\(\dfrac{z}{t}\)(2)
Từ (1) và (2) suy ra:
\(\dfrac{x}{y}\)=\(\dfrac{y}{z}\)=\(\dfrac{z}{t}\)=\(\dfrac{x^3}{y^3}\)=\(\dfrac{y^3}{z^3}\)=\(\dfrac{z^3}{t^3}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x^3}{y^3}\)=\(\dfrac{y^3}{z^3}\)=\(\dfrac{z^3}{t^3}\)=\(\dfrac{x^3+y^3+z^3}{y^3+z^3+t^3}\)
Mặt khác\(\dfrac{x^3}{y^3}\)=\(\dfrac{y^3}{z^3}\) =\(\dfrac{z^3}{t^3}\)=\(\dfrac{x^3y^3z^3}{y^3z^3t^3}\)=\(\dfrac{x^3}{t^3}\)
Từđó ta suy ra \(\dfrac{x^3+y^3+z^3}{y^3+z^3+t^3}\)= \(\dfrac{x^3}{t^3}\)
( bạn ghi sai đề nên mk đã sửa lại )


Các câu hỏi tương tự
Là Tôi Ngang Tàng
Xem chi tiết
Đổng Ngạc Lương Tịch
Xem chi tiết
Heo Mách
Xem chi tiết
sakura
Xem chi tiết
Nanako
Xem chi tiết
Moon Moon
Xem chi tiết
Trần Đức Mạnh
Xem chi tiết
Tiến Đạt
Xem chi tiết
daohung1717
Xem chi tiết