1. a) left{{}begin{matrix}x,y,z0xyz1end{matrix}right.. Tìm max Pfrac{1}{sqrt{x^5-x^2+3xy+6}}+frac{1}{sqrt{y^5-y^2+3yz+6}}+frac{1}{sqrt{z^5-z^2+zx+6}}
b) left{{}begin{matrix}x,y,z0xyz8end{matrix}right.. Min Pfrac{x^2}{sqrt{left(1+x^3right)left(1+y^3right)}}+frac{y^2}{sqrt{left(1+y^3right)left(1+z^3right)}}+frac{z^2}{sqrt{left(1+z^3right)left(1+x^3right)}}
c) x,y,z0. Min Psqrt{frac{x^3}{x^3+left(y+zright)^3}}+sqrt{frac{y^3}{y^3+left(z+xright)^3}}+sqrt{frac{z^3}{z^3+left(x+yright)^3}}
d) a,b,c0;...
Đọc tiếp
1. a) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=1\end{matrix}\right.\). Tìm max \(P=\frac{1}{\sqrt{x^5-x^2+3xy+6}}+\frac{1}{\sqrt{y^5-y^2+3yz+6}}+\frac{1}{\sqrt{z^5-z^2+zx+6}}\)
b) \(\left\{{}\begin{matrix}x,y,z>0\\xyz=8\end{matrix}\right.\). Min \(P=\frac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\frac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\frac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)
c) \(x,y,z>0.\) Min \(P=\sqrt{\frac{x^3}{x^3+\left(y+z\right)^3}}+\sqrt{\frac{y^3}{y^3+\left(z+x\right)^3}}+\sqrt{\frac{z^3}{z^3+\left(x+y\right)^3}}\)
d) \(a,b,c>0;a^2+b^2+c^2+abc=4.Cmr:2a+b+c\le\frac{9}{2}\)
e) \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\). Cmr: \(\frac{a}{b^3+ab}+\frac{b}{c^3+bc}+\frac{c}{a^3+ca}\ge\frac{3}{2}\)
f) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=4\end{matrix}\right.\) Cmr: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\le3\)
g) \(\left\{{}\begin{matrix}a,b,c>0\\ab+bc+ca+abc=2\end{matrix}\right.\) Max : \(Q=\frac{a+1}{a^2+2a+2}+\frac{b+1}{b^2+2b+2}+\frac{c+1}{c^2+2c+2}\)