a) Ta có AD là đường cao của △ABC (gt)
=> AD⊥BC => ˆCDA=90
Tương tự ta có ˆCEB=90
Tứ giác CEHD có : ˆCDA+ˆCEB=90o+90o=180 => Tứ giác CEHD là tứ giác nội tiếp => 4 điểm C,H,D,E cùng thuộc 1 đường tròn
a) Ta có AD là đường cao của △ABC (gt)
=> AD⊥BC => ˆCDA=90
Tương tự ta có ˆCEB=90
Tứ giác CEHD có : ˆCDA+ˆCEB=90o+90o=180 => Tứ giác CEHD là tứ giác nội tiếp => 4 điểm C,H,D,E cùng thuộc 1 đường tròn
1) cho △ABC, đường cao BD, CE cắt nhau tại H
a) c/m: A, D, H, E cùng thuộc 1 đường tròn
b) c/m: B, D, E, C cùng thuộc 1 đường tròn
giúp mk vs ạ mk cần gấp
2) cho △ABC ⊥A, đường cao AH. gọi D, E lần lượt là hình chiếu của H trên AB, AC. c/m: A, D, H, E cùng thuộc 1 đường tròn
giúp mk vs ạ mk cần gấp
cho △ABC nhọn, đường cao BD, CE
a) c/m: B, D, C, E cùng thuộc 1 đường tròn
b) vẽ đường tròn tâm O đường kính AC cắt BD tại P. vẽ đường tròn tâm I đường kính AB cắt CE tại Q. c/m: △APQ cân
giúp mk vs ạ mk cần gấp
4) cho △ABC nhọn, đường cao BD, CE
a) c/m: B, C, D, E cùng thuộc 1 đường tròn
b) vẽ đường tròn tâm O đường kính AC cắt BD tại P. vẽ đường tròn tâm I đường kính AB cắt CE tại Q. c/m: △APQ cân
2) cho △ABC ⊥A, đường cao AH. gọi D, E lần lượt là
hình chiếu của H tên AB, AC. c/m: A, D, H, E cùng thuộc
1 đường tròn
giúp mk vs ạ mk cần gấp
Cho tam giác abc cân tại A các đường cao AD, BE cắt nhau tại H. Gọi M,N lần lượt là trung điểm của Ab và CH. CM: 4 điểm M,N,D,E cùng nằm trên một đường tròn
Giúp mk vs ạ mk tik cho
tròn
Cho tam giác ABC đều có cạnh = a, các đường cao BD và CE cắt nhau tại H
a) Chứng minh: 4 điểm B,E,D,C thuộc cùng 1 đường tròn. Hãy xác định tâm và bán kính của đường tròn ấy
b) Chứng minh: Điểm H nắm trong đường tròn và điểm A nằm ngoài đường tròn đi qua 4 điểm B,E,D,C
Cho tam giác ABC nhọn ; có 2 đường cao BD và CE cắt nhau tại H.
a. Chứng minh rằng 4 điểm A , D , H , E thuộc 1 đường tròn.
b. Chứng minh 4 điểm B , C , E , D thuộc 1 đường tròn.
Cho tam giác DEF có 2 đường cao EM và FN cắt nhau tại I.Chứng minh rằng:
a. 4 điểm E,M,N,F cùng thuộc 1 đường tròn
b. 4 điểm D,M,I,N cùng thuộc 1 đường tròn