bài 1
ab+bc+ca=0
=>ab+bc=-ca
ta có (a+b)(b+c)(c+a)/abc
=> (ab+ac+bc+b2)(c+a)/abc
=> (0+b2)(c+a)/abc
=>b2c+b2a/abc
=>b(ab+bc)/abc
=>b(-ac)/abc
=>-abc/abc=-1
bài 1
ab+bc+ca=0
=>ab+bc=-ca
ta có (a+b)(b+c)(c+a)/abc
=> (ab+ac+bc+b2)(c+a)/abc
=> (0+b2)(c+a)/abc
=>b2c+b2a/abc
=>b(ab+bc)/abc
=>b(-ac)/abc
=>-abc/abc=-1
Phân tích đa thức thành nhân tử
a) \(\left(x+y-2z\right)^3+\left(y+z-2x\right)^3+\left(z+x-2y\right)^3\)
b) \(a\left(c^2+b^2+bc\right)+b\left(c^2+a^2+ca\right)+c\left(a^2+b^2+bc\right)\)
c) (a+b+c)(ab+ac+bc)-abc
d) \(c\left(a+2b\right)^3-b\left(2a+b\right)^3\)
e) xy(x+y)-yz(y+z)+xz(x-z)
cả nhà ơi cho tớ hỏi với, đề thi kiểm tra toán trường tớ lớp 8. ai biết bày cho tớ với
a) tìm các giá trị nguyên dương x, y sao cho 3xy+x+y=17
b) cho 3 số a, b, c thỏa mãn a+b+c=1 và a^3+b^3+c^3=1
tính giá trị của biểu thức P=a^2017+b^2017+c^2017
~ mấy bạn ơi giúp tớ nhanh với, tớ gấp lắm ~
Cho \(a+b+c=1\) \(\left(1\right)\) ; \(a^2+b^2+c^2=1\) \(\left(2\right)\) ; \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(3\right)\)
CMR : \(xy+yz+zx=0\)
1, cho a,b,c >0 , chứng minh rằng
(-a+b+c)/2a + (a-b+c)/2b + (a+b-c)/2c >hoặc = 3/2
2. cho x,y,z >0 , tìm GTNN của biểu thức sau :
P= x/(y+z)+ y/(z+x) + z/(x+y)
x^2 + 2y +1 = y^2+ 2z +1 =z^2 + 2x +1 =0 .Tính A=x^2017 + y^2017 + z^2017
mình cần 1 bài giairchi tiết để so sánh vs mik mn jup nha:
1, cho x,y là các số nguyên dương thỏa mãn x+y\(\ge\)6
Tìm Min P= 3x+2y+\(\dfrac{6}{x}\)+\(\dfrac{8}{y}\)
2, cho x,y,z>0 thỏa mãn x2+y2+z2\(\le\)3
Tìm Min C=\(\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+zx}\)
3, cho x,y\(\in Z\); x,y>0 thỏa mãn x+y=2017
Tìm Max, Min : A= x(x2+y)+y(y2+x)
Câu 1: CMR : Nếu \(a^3+b^3+c^3=3abc\) thì \(a+b+c=0\) hoặc \(a=b=c\)
Câu 2: Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) . Tính \(\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}\)
Câu 3 : Cho \(a^3+b^3+c^3=3abc\left(a.b.c\ne0\right)\). Tính\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Cho a,b,c là các số dương thỏa mản a3 + b3 + c3 = 3abc
Tính \(A=\frac{a^{2017}}{b^{2017}}+\frac{b^{2017}}{c^{2017}}+\frac{c^{2017}}{a^{2017}}\)
Mong mọi người giúp em tí.
Cho 3 số x,y vả z thoả mãn 1/x+1/y+1/z=0. Hãy tính A= yz/x^2+zx/y^2+xy/z^2