a: \(A=\dfrac{a-1}{2\sqrt{a}}\cdot\left(\dfrac{\sqrt{a}\left(a-2\sqrt{a}+1\right)-\sqrt{a}\left(a+2\sqrt{a}+1\right)}{a-1}\right)\)
\(=\dfrac{a-1}{2\sqrt{a}}\cdot\dfrac{a\sqrt{a}-2a+\sqrt{a}-a\sqrt{a}-2a-\sqrt{a}}{a-1}\)
\(=-\dfrac{4a}{2\sqrt{a}}=-2\sqrt{a}\)
b: Để A=4 thì \(-2\sqrt{a}=4\)
hay \(a\in\varnothing\)
Để A>-6 thì A+6>0
\(\Leftrightarrow-2\sqrt{a}>-6\)
=>0<a<9