Chương IV : Biểu thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
👁💧👄💧👁

1. Cho 3 đa thức: \(A=2x^2-7xy+4;B=4x^2+xy-9;C=-6x^2+6xy+17\). Chứng minh rằng với mọi giá trị của x;y thì có ít nhất một trong 3 đa thức trên có giá trị dương.

2. Tìm (x;y) để \(8x-5y-1=0\)

Nguyễn Việt Lâm
26 tháng 2 2020 lúc 17:32

\(A+B+C=4+17-9=12>0\Rightarrow\) ít nhất 1 trong 3 đa thức phải có giá trị dương

2. Bài này cần điều kiện x;y là các số nguyên mới giải được

\(8x-16-5y+15=0\)

\(\Leftrightarrow8\left(x-2\right)=5\left(y-3\right)\)

Do 8 và 5 nguyên tố cùng nhau \(\Rightarrow x-2⋮5\Rightarrow x-2=5k\Rightarrow x=5k+2\)

\(\Rightarrow y=8k+3\)

Vậy nghiệm của pt là \(\left(x;y\right)=\left(5k+2;8k+3\right)\) với \(k\in Z\)

Khách vãng lai đã xóa
👁💧👄💧👁
1 tháng 3 2020 lúc 22:22

Nguyễn Việt Lâm Ad ơi, em mới tìm ra hướng giải khác, ad check giúp em ạ:

\(8x-5y-1=0\\ \Rightarrow8x=5y+1\\ \Rightarrow x=\frac{5y+1}{8}\)

\(8x-5y-1=0\\ \Rightarrow-5y=-8x+1\\ \Rightarrow5y=8x-1\\ \Rightarrow y=\frac{8x-1}{5}\)

Vậy \(\left(x;y\right)=\left(\frac{5y+1}{8};\frac{8x-1}{5}\right)\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
👁💧👄💧👁
Xem chi tiết
chuong Nguyen Duy
Xem chi tiết
Nguyễn Ngọc 4397
Xem chi tiết
Lam anh Nguyễn hoàng
Xem chi tiết
Nguyễn Phú Hào
Xem chi tiết
Pé Chảnh
Xem chi tiết
Lê Mỹ Dung
Xem chi tiết
Ngô Văn Phong
Xem chi tiết
Mạc Hoa Nhi
Xem chi tiết