\(Dk:x>1\)\(A=\frac{x}{\sqrt{x}-1}-\frac{2x-\sqrt{x}}{x-\sqrt{x}}=\frac{x\sqrt{x}}{x-\sqrt{x}}-\frac{2x-\sqrt{x}}{x-\sqrt{x}}=\frac{x\sqrt{x}-2x+\sqrt{x}}{x-\sqrt{x}}=\frac{x-2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)
\(x=3+2\sqrt{2}=1+2\sqrt{2}+2=\left(\sqrt{2}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{2}+1\Rightarrow A=\sqrt{2}\)