\(A=\left(\frac{x}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)\)
\(=\left(\frac{x-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right)=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(x=4+2\sqrt{3}=\left(\sqrt{3}+1\right)^2\Rightarrow\sqrt{x}=\sqrt{3}+1\)
\(\Rightarrow A=\frac{\sqrt{3}+1+2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}+1-2\right)}=\frac{3+\sqrt{3}}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\frac{3+\sqrt{3}}{2}\)
\(A=0\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}=0\Leftrightarrow\sqrt{x}+2=0\Leftrightarrow\sqrt{x}=-2< 0\) (vô nghiệm)
\(A>0\Leftrightarrow\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-2\right)}>0\Leftrightarrow\sqrt{x}-2>0\Leftrightarrow x>4\)