1)
\(27+(x-3)(x^2+3x+9)=-x\)
\(\Leftrightarrow 27+(x^3-3^3)=-x\)
\(\Leftrightarrow x^3=-x\)
\(\Leftrightarrow x^3+x=0\Leftrightarrow x(x^2+1)=0\)
\(\Rightarrow \left[\begin{matrix} x=0\\ x^2+1=0(vl)\end{matrix}\right.\)
Vậy $x=0$
2)
\(-4(x+2)-7(2x-1)+9(4-3x)=30\)
\(\Leftrightarrow -4x-8-14x+7+36-27x=30\)
\(\Leftrightarrow -45x+35=30\Leftrightarrow -45x=-5\)
\(\Rightarrow x=\frac{-5}{-45}=\frac{1}{9}\)
3)
\(x^2-4x+4=0\)
\(\Leftrightarrow x^2-2.2x+2^2=0\)
\(\Leftrightarrow (x-2)^2=0\Rightarrow x-2=0\Rightarrow x=2\)
4)
\((x-1)(x^2+x+1)-x(x+2)(x-2)=5\)
\(\Leftrightarrow (x^3-1^3)-x[(x+2)(x-2)]=5\)
\(\Leftrightarrow x^3-1-x(x^2-2^2)=5\)
\(\Leftrightarrow x^3-1-x^3+4x=5\)
\(\Leftrightarrow 4x-1=5\Rightarrow 4x=6\Rightarrow x=\frac{6}{4}=\frac{3}{2}\)