\(A=4\sqrt{7}-3-15=4\sqrt{7}-18\\ B=\left(2\sqrt{3}+3\sqrt{3}-12\sqrt{3}\right):\sqrt{3}=-7\sqrt{3}:\sqrt{3}=-7\\ C=\sqrt{5}-\sqrt{3}-\sqrt{5}+1+\sqrt{3}=1\\ D=\left[\dfrac{\sqrt{5}\left(\sqrt{3}-2\right)}{2-\sqrt{3}}+\dfrac{\sqrt{7}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\right]\left(\sqrt{7}-\sqrt{5}\right)=\left(-\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)=-\left(7-5\right)=-2\\ E=\dfrac{\sqrt{3}\left(\sqrt{3}+2\right)}{\sqrt{3}}+\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-\dfrac{\sqrt{3}-1}{1-\sqrt{3}}=\sqrt{3}+\sqrt{2}+1\\ F=\dfrac{\sqrt{5}\left(\sqrt{5}-2\right)}{\sqrt{5}}-\dfrac{2\left(\sqrt{5}+2\right)}{1}+\sqrt{\left(2-\sqrt{5}\right)^2}=\sqrt{5}-2-2\sqrt{5}-4+2-\sqrt{5}=-4-2\sqrt{5}\)