HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Ta có:
\(x+y\ge2\sqrt{xy}=2\sqrt{16}=8\)
Dấu bằng xảy ra khi: x=y=4
Vậy min của x+y là 8 tại x=y=4
\(3\left(3x-5\right)=9x^2-25\\ \Leftrightarrow9x^2-9x-10=0\\ \Leftrightarrow\left(3x\right)^2-2.3x.\dfrac{3}{2}+\dfrac{9}{4}=\dfrac{49}{4}\\ \Leftrightarrow\left(3x-\dfrac{3}{2}\right)^2=\dfrac{49}{4}\\ \Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{3}{2}=\dfrac{7}{2}\\3x-\dfrac{3}{2}=\dfrac{-7}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=5\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=\dfrac{-2}{3}\end{matrix}\right.\)
Xét 2 TH sau:
TH1: a+b+c=0
Khi đó:
\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\\ =\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{c+a}{a}\\ =\dfrac{-c}{b}.\dfrac{-a}{c}.\dfrac{-b}{a}\\ =-1\)
TH2: a+b+c khác 0
\(\dfrac{a+b}{c}=\dfrac{b+c}{a}=\dfrac{c+a}{b}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\)
Suy ra: a+b=2c; b+c=2a; c+a=2b
Do đó:
\(M=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)\\ =\dfrac{a+b}{b}.\dfrac{b+c}{c}.\dfrac{c+a}{a}\\ =\dfrac{2c}{b}.\dfrac{2a}{c}.\dfrac{2b}{a}\\ =8\)
Do (p) đi qua A(0;3), B(3;0) và C(-1;1) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}3=c\\9a+3b+c=0\\a+b+c=-1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}c=3\\3a+b=-1\\a+b=-4\end{matrix}\right.\\ \Leftrightarrow \left\{{}\begin{matrix}c=3\\a=\dfrac{3}{2}\\b=\dfrac{-11}{2}\end{matrix}\right.\)
Phương vuông góc với mặt bàn, sàn nhà
Chiều từ dưới lên
\(4\left(x+1\right)^2-\left(2x-1\right)^2-8\left(x-1\right)\left(x+1\right)=11\\ \Leftrightarrow4x^2+8x+4-4x^2+4x-1-8x^2+8=11\\ \Leftrightarrow-8x^2+12x=0\\ \Leftrightarrow-4x\left(2x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{2}\end{matrix}\right.\)
an ha là sao ạ