Học tại trường Chưa có thông tin
Đến từ Đà Nẵng , Chưa có thông tin
Số lượng câu hỏi 0
Số lượng câu trả lời 820
Điểm GP 465
Điểm SP 966

Người theo dõi (25)

Lê Nghia
Rhider
Lê Phương Anh

Đang theo dõi (2)

Akai Haruma

Câu trả lời:

a) Vì M là điểm chính giữa cung AC \(\Rightarrow OM\bot AC\Rightarrow\angle MHC=90\)

Vì AB là đường kính \(\Rightarrow\angle AMB=90\Rightarrow AM\bot MB\) 

mà \(MB\parallel CD\Rightarrow AM\bot CD\Rightarrow \angle MKC=90\)

\(\Rightarrow CKMH\) nội tiếp

b) Vì AB là đường kính \(\Rightarrow\angle ACB=90\Rightarrow CB\bot AC\)

mà \(DM\bot AC\Rightarrow\)\(CB\parallel DM\) mà \(CD\parallel BM\Rightarrow DMBC\) là hình bình hành

\(\Rightarrow\left\{{}\begin{matrix}CD=MB\\BC=DM\end{matrix}\right.\)

c) DA là tiếp tuyến mà \(AC\bot DO\Rightarrow\) DC là tiếp tuyến

\(\Rightarrow DC\bot CO\) mà \(DC\parallel BM\Rightarrow BM\bot CO\Rightarrow\) C là điểm chính giữa MB

\(\Rightarrow\stackrel\frown{CB}=\stackrel\frown{CM}=\stackrel\frown{MA}\Rightarrow\stackrel\frown{CB}=\stackrel\frown{CM}=\stackrel\frown{AM}=60\)

\(\Rightarrow\) để AD là tiếp tuyến thì C nằm trên nửa đường tròn sao cho \(\widehat{BOC}=60\)

d) Từ câu c \(\Rightarrow\Delta BOC\) đều \(\Rightarrow BC=R\)

\(\Rightarrow AC=\sqrt{AB^2-BC^2}=\sqrt{3}R\)

\(\Delta MAO\) đều \(\)có \(AH\bot MO\Rightarrow HM=HO=\dfrac{1}{2}R\)

Ta có: \(\Delta DAO\) vuông tại A có \(AM=MO\Rightarrow AM=MO=MD=R\)

\(\Rightarrow DH=\dfrac{3}{2}R\)

Ta có: diện tích phần tam giác ACD ngoài đường tròn là:

\(=S_{ACD}-\left(S_{qAOC}-S_{AOC}\right)=\dfrac{1}{2}DH.AC-\left(\dfrac{\pi R^2.120}{360}-\dfrac{1}{2}.OH.AC\right)\)

\(=\dfrac{1}{2}.\dfrac{3}{2}R.\sqrt{3}R-\left(\dfrac{1}{3}\pi R^2-\dfrac{1}{2}.\dfrac{1}{2}R.\sqrt{3}R\right)\)

\(=\dfrac{3\sqrt{3}}{4}R^2-\left(\dfrac{1}{3}\pi-\dfrac{\sqrt{3}}{4}\right)R^2=\left(\dfrac{3\sqrt{3}}{4}-\dfrac{1}{3}\pi+\dfrac{\sqrt{3}}{4}\right)R^2\)

ý tưởng là vậy chứ tính toán thì bạn kiểm tra lại nghe (mình không chắc mình tính đúng cho lắm)