HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho x, y, z là các số dương thỏa mãn điều kiện: xy + yz + xz = xyz
CMR: \(\dfrac{1}{x+4y+9z}\le\dfrac{1}{36}\)
Tìm giá trị nhỏ nhất của biểu thức:
\(M=\left(1+tg^2x\right)\left(1-sin^2x\right)+\left(1+cotg^2x\right)\left(1-cos^2x\right)-sinx.cosx\) \(\left(0^o< x< 90^o\right)\)
Cho 2n số nguyên dương a1, a2, a3,......, a2n-1, a2n thỏa mãn:
a12 + a32 + a52 + ..... + a2n-12 = a22 + a42 + a562 + ..... + a2n2
Chứng minh rằng a1 + a2 + a3 + ...... + a2n-1 + a2n là hợp số (n \(\in\) N*)
Cho sắt tác dụng với 200ml dung dich axit sunfuric ta thu được 2,24 lit khí (đktc)
a. Tính khối lượng sắt tham gia
b. Tính khối lượng muối tạo thành
c. Tính nồng độ mol của axit trên
Hòa tan hoàn toàn 1,2g MgO vào 300 ml dd H2SO4
a. Tính nồng độ mol của axit đã dùng
b. Tính khối lượng muối tạo thành.
1, Cho a, b, c là 3 số dương. CMR:
a, \(\dfrac{a}{\sqrt{a+b}\sqrt{a+c}}+\dfrac{b}{\sqrt{a+b}\sqrt{b+c}}+\dfrac{c}{\sqrt{a+c}\sqrt{b+c}}\le\dfrac{3}{2}\)
b, \(\dfrac{a}{\sqrt{a+b}\sqrt{b+c}}+\dfrac{b}{\sqrt{a+c}\sqrt{b+c}}+\dfrac{c}{\sqrt{a+c}\sqrt{b+a}}\ge\dfrac{3}{2}\)
giúp em bài này với ạ :<
Cho a, b, c là các số dương có abc = 8. CMR \(\dfrac{1}{\sqrt{a^3+1}}+\dfrac{1}{\sqrt{b^3+1}}+\dfrac{1}{\sqrt{c^3+1}}\ge1\)
Cho a, b, c là các số dương biết abc = 1. Chứng minh rằng: \(\dfrac{a^3}{\left(b+1\right)\left(c+2\right)}+\dfrac{b^3}{\left(c+1\right)\left(a+2\right)}+\dfrac{c^3}{\left(a+1\right)\left(b+2\right)}\ge\dfrac{1}{2}\)