HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
kcj : )) chúc bn hok tốt ^.^
a) Xét tứ giác AEFD có:
\(\widehat{EAD}=\widehat{ADF}=\widehat{EFD}\) (cùng bằng 90 độ)
=> AEFD là hình chữ nhật (do có 3 góc vuông)
Gọi I' là 1 điểm mà AC cắt EF
Xét tam giác CAD có:
I' nằm trên EF nêm I'F song song với AD (AEFD là hình chữ nhật) (1)
vì AEFD là hình chữ nhật nên AE=DF => DF = DC :2 <=> F là trung điểm của CD (2)
Từ (1) và (2) => I' là trung điểm của AC đồng thời ta được I'F = AD:2
mà AD = EF
=> I' là trung điểm của EF => I' trùng với I
=> I là trung điểm của AC
( do I' là trung điểm của AC và I' là giao điểm của AC và EF)
=> điều phải chứng minh
câu 1:
\(B=\dfrac{x-2}{y}-\dfrac{x}{x-2}+\dfrac{4}{x.\left(x-2\right)}\)
\(\Leftrightarrow B=\dfrac{\left(x-2\right)^2.x}{y.\left(x-2\right).x}-\dfrac{x^2y}{y.\left(x-2\right).x}+\dfrac{4y}{y.\left(x-2\right).x}\)
\(\Leftrightarrow B=\dfrac{\left(x-2\right)^2-x^2y+4y}{x^2y-2xy}\)
\(\Leftrightarrow B=\dfrac{\left(x-2\right)^2-y.\left(x^2-4\right)}{xy.\left(x-2\right)}\)
\(\Leftrightarrow B=\dfrac{\left(x-2\right)^2-y.\left(x-2\right).\left(x+2\right)}{xy.\left(x-2\right)}\)
\(\Leftrightarrow B=\dfrac{\left(x-2\right)\left[x-2-y.\left(x+2\right)\right]}{xy.\left(x-2\right)}\)
\(\Leftrightarrow B=\dfrac{x-2-xy+2}{xy}=\dfrac{x-xy}{xy}\)
\(\Leftrightarrow B=\dfrac{x}{xy}-\dfrac{xy}{xy}=\dfrac{1}{y}-1=\dfrac{1-y}{y}\)
Vậy \(B=\dfrac{1-y}{y}\)
vì n là số nguyên tố và n >2 nên n chỉ có dạng 3k+1 hoặc 3k+2
TH1: với n có dạng 3k+1 thì ta được
\(2^{n-1}=2^{3k+1-1}=2^{3k}=6^k\) mà \(6^k\) chia hết cho 2 ; 3 ; 6
\(\Rightarrow2^{n-1}\) là số chính phương (1)
TH2: với n có dạng 3k+2 thì ta được:
\(2^{3k+2+1}=2^{3k+3}=2^{3.\left(k+1\right)}=\left(2^3\right)^{2k+1}=8^{2k+1}\)
Mà \(8^{2k+1}\) chia hết cho 2: 4: 8
\(\Rightarrow2^{n+1}\) là số chính phương (2)
Từ (1) và (2) ta thấy \(2^{n-1}\) và \(2^{n+1}\) không thể đồng thời là số nguyên tố với n >2
có A = \(a^4-2a^3+3a^2-4a+5\)
\(\Leftrightarrow A=\left(a^2\right)^2-2a^2.a+a^2+2a^2-4a+2+3\)
\(\Leftrightarrow A=\left(a^2-a\right)^2+\left(\sqrt{2}.a-\sqrt{2}\right)^2+3\)
\(\Rightarrow\) A luôn luôn lớn hơn hoặc bằng 3 với mọi giá trị của x
=> giá trị nhỏ nhất của A = 3 khi
( \(\left(a^2-a\right)^2=0\) \(\Leftrightarrow a^2-a=0\Leftrightarrow a\left(a-1\right)=0\) )
\(\Rightarrow\) a= 0 hoặc a= 1
A B C H M P N D E F
ƯCLN(2ab;55) . do 55 không chia hết cho 2 mà 2ab chia hết cho 2 nên ta được:
WCLN(2ab;55)=1