HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho tam giác ABC với AB=3, AC=4, BC= 5. Xét 1 đường thẳng d đi qua A và không cắt cạnh BC(d có thể đi qua B và C). Kí hiệu x,y theo thứ tự là khoảng cách từ B và C đến đường thẳng y. Tìm min, max của x+y
Giúp e với ạ, e cảm ơn
giúp e vs ạ, e cảm ơn
Cho x,y,z>0 . Tìm MinP = \(\Sigma\dfrac{x^2}{y^2+yz+z^2}\)
Cho x,y,z> 0. Tìm MinP = \(\Sigma\dfrac{x}{\sqrt{x^2+8yz}}\)
Giải ptrinh :
\(\dfrac{x^2}{\sqrt{3x-2}}-\sqrt{3x-2}=1-x\)
\(\sqrt{x+1}+2\left(x+1\right)=x-1+\sqrt{1-x}+3\sqrt{1-x^2}\)
\(3x^2+3x+2=\left(x+6\right)\sqrt{3x^2-2x-3}\)
Cho a,b,c là độ dài ba cạnh của một tam giác .
CMR : \(\Sigma\dfrac{a}{\sqrt[3]{b^3+c^3}}< 2\sqrt[3]{4}\)