HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
D mà bạn
c Nối OM \(\Rightarrow OM\) vuông góc với EF(do OM là đường nối từ tâm O đến trung điểm của dây cung EF)
\(\Rightarrow\Lambda AMO=\Lambda AHK=90^0\) Mà \(\Lambda OAM=\Lambda KAH\)
\(\Rightarrow\Delta OAM\sim\Delta KAH\left(g.g\right)\) \(\Rightarrow\dfrac{AM}{AH}=\dfrac{AO}{AK}\Rightarrow AM\cdot AK=AH\cdot AO\left(3\right)\)
Từ câu b có \(AH\cdot AO=AE\cdot AF\left(4\right)\)
Từ (3) và (4) \(\Rightarrow AM\cdot AK=AE\cdot AF\Rightarrow\dfrac{1}{AM\cdot AK}=\dfrac{1}{AE\cdot AF}\Rightarrow\dfrac{1}{AK}=\dfrac{AM}{AE\cdot AF}\Rightarrow\dfrac{2}{AK}=\dfrac{2AM}{AE\cdot AF}\Rightarrow\dfrac{AE+AF}{AE\cdot AF}=\dfrac{2}{AK}\Rightarrow\dfrac{1}{AE}+\dfrac{1}{ÀF}=\dfrac{2}{AK}\Rightarrow\dfrac{AK}{AE}+\dfrac{AK}{AF}=2\)
b Ta có \(\Lambda ABE=\dfrac{1}{2}sđ\cap BE,\Lambda AFB=\dfrac{1}{2}sđ\cap BE\Rightarrow\Lambda ABE=\Lambda AFB\)
Mà \(\Lambda EAB=\Lambda BAF\) \(\Rightarrow\Delta EAB\sim\Delta BAF\left(g.g\right)\Rightarrow\dfrac{EA}{BA}=\dfrac{AB}{ÀF}\Rightarrow AE\cdot AF=AB^2\left(1\right)\)
Áp dụng hệ thức lượng giác vào \(\Delta AOB\) có:(BH vuông góc với AO)
\(\Rightarrow AH\cdot AO=AB^2\left(2\right)\)
Từ (1) và (2) \(\Rightarrow AH\cdot AO=AE\cdot AF\)
Tương tự như bài trên:
\(\dfrac{33}{131}=1-\dfrac{98}{131}< 1-\dfrac{98}{151}=\dfrac{53}{151}\)
Áp dụng bđt Cô-si vào 2 số dương có:
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\dfrac{1}{2}\ge\dfrac{2}{\sqrt{xy}}\Rightarrow\sqrt{xy}\ge4\)
\(\Rightarrow\sqrt{x}+\sqrt{y}\ge2\sqrt{\sqrt{xy}}=2\sqrt{4}=4\)
Dấu = xảy ra \(\Leftrightarrow x=y=4\)
B
có thôi nhé đến đây chấm dứt ko bàn về chuyện này nữa
Cách của bạn cũng giống của mình mà, mình cố tình khử mẫu để cho nhìn dễ hơn thôi
\(ĐKXĐ:x\ge-2\)
\(\Leftrightarrow x^3+3x^2+6x-4x\sqrt{x+2}-8\sqrt{x+2}=0\Leftrightarrow4x^2-4x\sqrt{x+2}+8x-8\sqrt{x+2}+x^3-x\left(x+2\right)=0\Leftrightarrow4x\left(x-\sqrt{x+2}\right)+8\left(x-\sqrt{x+2}\right)+x\left(x-\sqrt{x+2}\right)\left(x+\sqrt{x+2}\right)=0\)\(\Leftrightarrow\left(x-\sqrt{x+2}\right)\left(x^2+x\sqrt{x+2}+4x+8\right)=0\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{x+2}=0\left(1\right)\\x^2+x\sqrt{x+2}+4x+8=0\left(2\right)\end{matrix}\right.\) Từ (1) \(\Rightarrow x=\sqrt{x+2}\left(x\ge0\right)\Rightarrow x^2=x+2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\x=-1\left(L\right)\end{matrix}\right.\) Từ (2) \(\Rightarrow x^2+x\sqrt{x+2}+4x+8\ge\left(-2\right)^2+\left(-2\right)\sqrt{-2+2}+4\left(-2\right)+8=4>0\) \(\Rightarrow\) ko có x
vậy...