HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
\(\Rightarrow f\left(x\right)=\dfrac{7}{4}x+\dfrac{1}{8}x+\dfrac{1}{8}x+\dfrac{8}{x^2}\)
Áp dụng bđt Cô-si :
\(\dfrac{1}{8}x+\dfrac{1}{8}x+\dfrac{8}{x^2}\ge3\sqrt[3]{\dfrac{1}{8}x\cdot\dfrac{1}{8}x\cdot\dfrac{8}{x^2}}=\dfrac{3}{2}\)
\(\Rightarrow f\left(x\right)=\dfrac{7}{4}x+\dfrac{1}{8}x+\dfrac{1}{8}x+\dfrac{8}{x^2}\ge7+\dfrac{3}{2}=\dfrac{17}{2}\)
Dấu bằng xảy ra \(\Leftrightarrow x=4\)
Bài 183:
Ta cần chứng minh : \(\dfrac{a^3+b^3}{c}+\dfrac{b^3+c^3}{a}+\dfrac{c^3+a^3}{b}\ge2\left(ab+bc+ca\right)\)
\(\Rightarrow ab\left(a^3+b^3\right)+bc\left(b^3+c^3\right)+ca\left(c^3+a^3\right)\ge2abc\left(ab+bc+ca\right)\Leftrightarrow a^4b+ab^4+b^4c+bc^4+c^4a+ca^4\ge2a^2b^2c+2ab^2c^2+2a^2bc^2\) Áp dụng bđt Cô-si vào các số dương a,b,c có:
\(a^4b+bc^4\ge2a^2bc^2,ab^4+ac^4\ge2ab^2c^2,b^4c+ca^4\ge2a^2b^2c\)
\(\Rightarrow a^4b+ab^4+b^4c+bc^4+ca^4+c^4a\ge2a^2b^2c+2ab^2c^2+2a^2bc^2\)
\(\Rightarrow\dfrac{a^3+b^3}{c}+\dfrac{b^3+c^3}{a}+\dfrac{c^3+a^3}{b}\ge2\left(ab+bc+ca\right)\)
Dấu bằng xảy ra \(\Leftrightarrow a=b=c\)
179:
CM bđt phụ \(a>b;a,b,m\in N\) thì \(\dfrac{a}{b}< \dfrac{a-m}{b-m}\Rightarrow a\left(b-m\right)< b\left(a-m\right)\Leftrightarrow ab-am< ab-bm\Leftrightarrow-am< -bm\Leftrightarrow a>b\)\(\Rightarrow\dfrac{a}{b}< \dfrac{a-m}{b-m}\)
Áp dụng bđt phụ \(\dfrac{a}{b}< \dfrac{a-m}{b-m}\) với a>b,a,b,m\(\in N\) có:
\(\Rightarrow A=\dfrac{10^{50}+2}{10^{50}-1}< \dfrac{10^{50}+2-2}{10^{50}-1-2}=\dfrac{10^{50}}{10^{50}-3}=B\)
\(\Rightarrow A< B\)
\(f\left(0\right)=4\cdot0^2-5\cdot0-1=-1,f\left(1\right)=4\cdot1^2-5\cdot1-1=4-5-1=-2,f\left(2\right)=4\cdot2^2-5\cdot2-1=16-10-1=5,f\left(-3\right)=4\cdot\left(-3\right)^2-5\cdot\left(-3\right)-1=36+15-1=50\)
a 8,65
b 72,493
c 0,04
B đúng
Vì \(f\left(x\right)⋮x-2;f\left(x\right):x^2-1\) dư 1\(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)=g\left(x\right)\cdot\left(x-2\right)\\f\left(x\right)=q\left(x\right)\left(x^2-1\right)+x=q\left(x\right)\left(x-1\right)\left(x+1\right)+x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=-1\left(2\right)\\a-b+c=-3\left(3\right)\end{matrix}\right.\)
Trừ từng vế của (2) cho (3) ta được:
\(\Rightarrow2b=2\Rightarrow b=1\)
Thay b=1 vào lần lượt (1) ,(2),(3) ta được:
\(\Rightarrow\left\{{}\begin{matrix}4a+2+c=-32\\a+1+c=-1\\a-1+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\\a+c=-2\\a+c=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)
Trừ từng vế của (4) cho (5) ta được:
\(\Rightarrow3a=-32\Rightarrow a=-\dfrac{32}{3}\Rightarrow c=-2+\dfrac{32}{3}=\dfrac{26}{3}\) Vậy...
139:
Đặt \(x=\dfrac{1}{a},y=\dfrac{1}{b},z=\dfrac{1}{c}\left(a,b,c>0\right)\)
GT \(\Rightarrow\dfrac{1}{ab}+\dfrac{1}{bc}+\dfrac{1}{ca}=\dfrac{3}{abc}\Rightarrow a+b+c=3\)
\(\Rightarrow\dfrac{y^2}{xy^2+2x^2}=\dfrac{1}{b^2}:\left(\dfrac{1}{ab^2}+\dfrac{2}{a^2}\right)=\dfrac{1}{b^2}:\left(\dfrac{a+2b^2}{a^2b^2}\right)=\dfrac{a^2}{a+2b^2}=a-\dfrac{2ab^2}{a+2b^2}\ge a-\dfrac{2ab^2}{3b\sqrt[3]{ab}}=a-\dfrac{2}{3}\sqrt[3]{a^2b^2}\ge a-\dfrac{2}{9}\left(a+b+ab\right)\) Tương tự ta được:
\(\dfrac{x^2}{zx^2+2z^2}=\dfrac{c^2}{c+2a^2}=c-\dfrac{2ca^2}{c+2a^2}\ge c-\dfrac{2}{9}\left(c+a+ac\right)\)
\(\dfrac{z^2}{yz^2+2y^2}=\dfrac{b^2}{b+2c^2}=b-\dfrac{2bc^2}{b+2c^2}\ge b-\dfrac{2}{9}\left(b+c+bc\right)\)
\(\Rightarrow\dfrac{y^2}{xy^2+2x^2}+\dfrac{x^2}{zx^2+2z^2}+\dfrac{z^2}{yz^2+2z^2}\ge\left(a+b+c\right)-\dfrac{2}{9}\left(2a+2b+2c+ab+bc+ca\right)\) \(\ge3-\dfrac{2}{9}\left[6+\dfrac{\left(a+b+c\right)^2}{3}\right]=3-\dfrac{2}{9}\left(6+\dfrac{9}{3}\right)=3-\dfrac{2}{9}\cdot9=1\)
Dấu bằng xảy ra \(\Leftrightarrow a=b=c=\dfrac{1}{3}\Rightarrow x=y=z=3\)
\(\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}>\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{100\cdot101}=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{100}-\dfrac{1}{101}=\dfrac{1}{4}-\dfrac{1}{101}>\dfrac{1}{4}-\dfrac{1}{20}=\dfrac{1}{5}\left(1\right)\)
\(\dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{100^2}< \dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{99\cdot100}=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}=\dfrac{1}{3}-\dfrac{1}{100}< \dfrac{1}{3}\left(2\right)\) Từ (1) và (2) \(\Rightarrow\dfrac{1}{5}< \dfrac{1}{4^2}+\dfrac{1}{5^2}+...+\dfrac{1}{99^2}+\dfrac{1}{100^2}< \dfrac{1}{3}\)