Tìm Max, Min của hàm số:
1) \(y=\dfrac{x+1+\sqrt{x-1}}{x+1+2\sqrt{x-1}}\)
2) \(y=\sin^{2016}x+\cos^{2016}x\)
3) \(y=2\cos x-\dfrac{4}{3}\cos^3x\) trên \(\left[0;\dfrac{\pi}{2}\right]\)
4) \(y=\sin2x-\sqrt{2}x+1,x\in\left[0;\dfrac{\pi}{2}\right]\)
5) \(y=\dfrac{4-cos^2x}{\sqrt{sin^4x+1}},x\in\left[-\dfrac{\pi}{3};\dfrac{\pi}{3}\right]\)
Một con lắc lò xo gồm lò xo nhẹ có độ cứng 100 N/m và vật nhỏ khối lượng m. Con lắc dao động điều hòa với chu kì T với biên độ 10 cm. Biết ở thời điểm t vật ở vị trí M. Ở thời điểm t + \(\dfrac{5T}{6}\), vật lại ở vị trí M nhưng đi theo chiều ngược lại. Động năng của vật khi nó ở M là:
Một con lắc lò xo dao động điều hòa theo phương ngang với tần số góc . Vật nhỏ của con lắc có khối lượng 100 g. Tại thời điểm t = 0, vật nhỏ qua vị trí cân bằng theo chiều dương. Tại thời điểm t = 24173/60 s, vận tốc v và li độ x của vật thỏa mãn \(v=\left(2-\sqrt{3}\right)\omega x\) lần thứ 2015. Lấy \(\pi^2=10\). Độ cứng của lò xo là