HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Nguyễn Việt Anh Mình hỏi bạn đặt câu hỏi chứ không hỏi bạn ạ. Vô duyên vừa vừa thôi chứ?
hoc24.vn
Khác số chút thoyy.
C,D là điểm như nào cơ chứ =))))
ĐK : x ≠ 0
\(\dfrac{x+1}{x}=3\)
=> \(3x=x+1\)
=> \(2x=1\)
=> \(x=\dfrac{1}{2}\)
=> \(x^2=\dfrac{1}{4}\)
=> \(\dfrac{1}{x^2}=4\)
Khi đó
\(\dfrac{x^2+1}{x^2}=1+\dfrac{1}{x^2}=1+4=5\)
\(333^{444}=\left(333^4\right)^{111}=\left(111^4.81\right)^{111}\)
\(444^{333}=\left(444^3\right)^{111}=\left(111^3.64\right)^{111}\)
Dễ thấy \(111^4.81>111^3.64\)
\(\Rightarrow333^{444}>444^{333}\)
x đầu ở đa thức A là x^3 chăng?
a/ \(A=x^3-5x^2+8x-4\)
\(=\left(x^3-x^2\right)+\left(-4x^2+4\right)+\left(8x-8\right)\)
\(=x^2\left(x-1\right)-4\left(x-1\right)\left(x+1\right)+8\)
\(=\left(x-1\right)\left(x^2-4x-4\right)=\left(x-1\right)\left(x-2\right)^2\)
b/ \(B=\dfrac{x^5}{30}-\dfrac{x^3}{6}+\dfrac{2x}{15}\)
\(=\dfrac{x^5}{30}-\dfrac{5x^3}{30}+\dfrac{4x}{30}\)
\(=\dfrac{x\left(x^4-5x^2+4\right)}{30}\)
\(=\dfrac{x\left(x^4-x^2-4x^2+4\right)}{30}\)
\(=\dfrac{x\left(x+2\right)\left(x-1\right)\left(x+1\right)\left(x-2\right)}{30}\)
\(\Leftrightarrow\left(x^4-20x^2+100\right)-36=0\)
\(\Leftrightarrow\left(x^2-10\right)^2=36\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-10=6\\x^2-10=-6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=16\\x^2=4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\pm4\\x=\pm2\end{matrix}\right.\)
Linh tinh thui, chắc sai.
Có
\(x+\dfrac{1}{x}=2\) (x khác 0)
\(\Rightarrow\dfrac{x^2+1}{x}=2\Rightarrow x^2+1=2x\Rightarrow\left(x-1\right)^2=0\Rightarrow x=1\)(TM)
Thay \(x=1\) vào bt A có \(A=\dfrac{1}{2}\)
\(2A=2+\dfrac{3}{2^2}+\dfrac{4}{2^3}+\dfrac{5}{2^4}+...+\dfrac{100}{2^{99}}\)
=> \(2A-A=A=1+\dfrac{3}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+....+\dfrac{1}{2^{99}}-\dfrac{100}{2^{100}}\)
Đặt \(B=\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{99}}\)
=> \(2B=\dfrac{1}{2^2}+\dfrac{1}{2^3}+....+\dfrac{1}{2^{98}}\)
=> \(B=\dfrac{1}{2^2}-\dfrac{1}{2^{99}}\)
=> \(A=1+\dfrac{3}{2^2}+\dfrac{1}{2^2}-\dfrac{100}{2^{100}}-\dfrac{1}{2^{99}}\)
=> \(A=2-\dfrac{102}{2^{100}}< 2\)
a/ Pt \(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\2x+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-4\end{matrix}\right.\)
Vậy \(S=\left\{7;-4\right\}\)
b/ pt \(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\5x-2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=\dfrac{2}{5}\end{matrix}\right.\)
c/ pt \(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\) (\(x^2+2>0\forall x\))\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)
d/ pt \(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\x+8=0\\x-5=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-8\\x=5\end{matrix}\right.\)