HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho hình thang cân ABCD (AB // CD) có . Gọi O là giao điểm của AC và BD.
a) Chứng minh tam giác DOC vuông cân.
b) Tính diện tích của hình thang ABCD, biết BD = 6 (cm).
1), Cho hình thang cân ABCD (AB // CD, AB < CD). Kẻ các đường cao AE, BF của hình thang. Chứng minh rằng DE = CF.
2) Cho hình thang cân ABCD (AB // CD).
a) Chứng minh:.
b) Gọi E là giao điểm của AC và BD. Chứng minh: .EA=EB
cho tam giác ABC trên các cạnh AB và AC thứ tự lấy 2 điểm D và E sao cho góc DEB=ACB=60 độa)cmr BCDE là hình thangb)biết EDB=3.CBD.tính EDB
cho tam giác ABC vuông ở A,E là điểm trên AB, qua E vẽ Ex vuông AB cắt AC ở D, AB=6cm,BC=10cm,AE=3cm.a)cm ACDE là hình thang vuôngb)cmr tam giác AEB cân và tính AEc)tính diện tích ABCD
.cho hình thang ABCD có A^=3D^, B^=C^(AB//CD)AB=\(\sqrt{2cm}\), AD=3cm,CD=4cma)cmr A^+B^=C^+D^b)tính các góc của hình thang ABCDc)tính diện tích của hình thang ABCD
1. cho a+b=0 cmr:(x+a).(x+b)=x2+ab2.cho m-n=0 cmr:(x-m).(x+n)=x2-mn
1.Chứng minh với mọi số nguyên n thì:a) n(2n-3)-2n(n+1) luôn chia hết cho 5b)(2n-3).(2n+3)-4n(n-9) luôn chia hết cho 92.Cho a và b là 2 số tự nhiên biết rằng a chia 5 dư 1, b chia 5 dư 4, cmr a.b chia 5 dư 4