áp dụng định lý py-ta-cho cho tam giác AHC:
\(\Rightarrow HC=\sqrt{AC^2-AH^2}\)
\(\Leftrightarrow HC=\sqrt{20^2-15^2}\)
\(\Leftrightarrow HC=5\sqrt{7}\)
áp dụng hệ thức về cạnh và đường cao cho tam giác vuông ta có:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow15^2=HB\cdot5\sqrt{7}\)
\(\Leftrightarrow HB=\frac{45\sqrt{7}}{7}\)
ta có \(AH^2=BH\cdot BC\)
\(AH^2=\frac{45\sqrt{7}}{7}\cdot\left(\frac{45\sqrt{7}}{7}+5\sqrt{7}\right)\)
\(\Leftrightarrow AH=\frac{3600}{7}\)
b) \(\sin HAC=\frac{HC}{AC}\)
\(\cos HAC=\frac{AH}{AC}\)
\(\tan HAC=\frac{HC}{AH}\)
\(\cot HAC=\frac{AH}{HC}\)
ỦNG HỘ MINK NHA ^-^