Cho phương trình \(3\sin^2x+2\left(m+1\right)sinx.cosx+m-2=0\)Số giá trị nguyên của m để trên khoảng\(\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\)phương trình có hai nghiệm \(x_1,x_2\) với\(x_1\in\left(-\frac{\pi}{2};0\right),x_2\in\left(0;\frac{\pi}{2}\right)\)là
cho đường tròn (O), từ điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC với đường tròn (B,C là các điểm).Gọi H là giao điểm của AO và BC, I là trung điểm của BH. Đường thẳng qua I vuông góc với OB cắt (O) tại hai điểm D,K(D thuộc cung nhỏ BC).Tia AD cắt đường tròn (O) tại điểm thứ hai E.DK cắt BE tại F
a/ Chứng minh ICEF là tứ giác nội tiếp
b/Chứng minh \(\widehat{DBH}=2\widehat{DKH}\)
c/CMR BD.CE=BE.CD và \(BF.CE^2=BE.CD^2\)
Cho hình vuông ABCD, đường tròn (O) nội tiếp hình vuông ABCD tiếp xúc với các cạnh AB,AD lần lượt tại các điểm E,F. Gọi giao điểm của CE và BF là G
a/Chứng minh rằng 5 điểm A,F,O,G,E cùng nằm trên một đường tròn
b/Gọi giao điểm của FB và đường tròn (O) là M (M khác F). Chứng minh rằng M là trung điểm của đoạn thẳng BG
c/Chứng minh rằng trực tâm tam giác GAF nằm trên đường tròn (O)