Tuyển Cộng tác viên Hoc24 nhiệm kì 28 tại đây: https://forms.gle/GrfwFgzveoKLVv3p6
Cho đường tròn (O) đường kính AB cố định. Gọi C là một điểm di
động trên (O) sao cho C khác A, C khác B và C không nằm chính giữa cung AB . Vẽ
đường kính CD của (O). Gọi d là tiếp tuyến của (O) tại A . Hai đường thẳng BC, BD
cắt d tại E, F.
1) Chứng minh tứ giác CDFE nội tiếp được đường tròn
2) Gọi M là trung điểm của EF và I là tâm đường tròn ngoại tiếp tứ giác CDFE .
Chứng minh : AB = 2.IM
3) Gọi H là trực tâm tam giác DEF . Chứng minh khi điểm C di động trên (O) thì điểm H luôn
chạy trên một đường tròn cố định.
Cho hai đường thẳng (d1):mx+(m-2)y+m+2=0 và (d2):(2-m)x+my-m-2=0
a) Tìm điểm cố định mà (d1) luôn đi qua và điểm cố định mà (d2) luôn đi qua
b) Chứng minh hai đường thẳng (d1) ,(d2) luôn cắt nhau tại một điểm I và khi m thay
đổi thì điểm I luôn thuộc một đường tròn cố định.