HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Cho đường tròn (O;R) đường kính AB cố định. Trên tia đối của tia AB lấy điểm C sao cho AC=R. Kẻ đường thẳng d vuông góc với BC tại C. Gọi D là trung điểm của OA, qua D vẽ dây cung EF bất kì của (O;R). Tia BE cắt d tại M, tia BF cắt d tại N.
a) Khi EF=4R/ căn 5. Tính DE,DF theo R
b) Cho A,B,C cố định.CMR tâm I của đường tròn ngoại tiếp tam giác BMN luôn nằm trên 1 đường thẳng cố định khi E chạy trên đường tròn (O)
không dùng máy tính để bấm kết quả nhé ạ
Cho hình chóp SABCD có đáy ABCD là hình thoi cạnh bằng a, góc DAB bằng 60 độ, tam giác SAB đều và nằm trên mặt phẳng vuông góc với mặt đáy, gọi M, N là trung điểm của AB, CD tính cosin của góc giữa 2 đường thẳng AN và SD
Cho tam giác ABC vuông tại A . Gọi M là trung điểm của BC . Từ M , kẻ ME , MF lần lượt vuông góc với AB , AC
a) Chứng minh tứ giác AEMF là hình chữ nhật
b) Gọi O là giao điểm của AM và EF ; K là điểm đối xứng với M qua AC . Chứng minh 3 điểm B , O , K thẳng hàng
c) Tìm điều kiện của tam giác ABC để tứ giác ABCK là hình thang cân . Khi đó nếu AM = 5cm , hãy tính diện tích của tam giác ABC