HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
(a\(^2\)+b\(^2\))(x\(^2\)+y\(^2\))≥(ax+by)\(^2\)
<=> a\(^2\)x\(^2\)+a\(^2\)y\(^2\)+b\(^2\)x\(^2\)+\(b^2\)y\(^2\)≥(ax)\(^2\)+(by)\(^2\)+2axby
<=>a\(^2\)x\(^2\)-a\(^2\)x\(^2\)+a\(^2\)y\(^2\)+b\(^2\)x\(^2\)+b\(^2\)y\(^2\)-b\(^2\)y\(^2\)-2axby≥0
<=>(ay)\(^2\)-2axby+(bx)\(^2\)≥0
<=>(ay-bx)\(^2\)≥0 ( luôn đúng )
Đẳng thức xảy ra khi và chỉ khi \(\dfrac{a}{x}\)=\(\dfrac{b}{y}\)
a=1,b=-4,c=m-1
Ta có : △ = b\(^2\)-4ac =16-4(m-2)=16-4m+8
Để PT(1) có nghiệm kép thì △=0 <=> 16-4m+8=0<=> 4m=24<=>m=6
Với m=6 PT(1) <=> x\(^2\)-4x+6-2=0<=>x\(^2\)-4x+4=0
Lại Có m=6 thì pt có nghiệm kép => x\(_1\)=x\(_2\)=-\(\dfrac{b}{2a}\)=2
Vậy Với m=6 thì pt 1 có nghiệm kép x=1
b) Theo hệ thức Vi-et
Ta có: x\(_1\)+x\(_2\)=\(\dfrac{-b}{a}\)=4 và x\(_1\).x\(_2\)=\(\dfrac{c}{a}\)=m-2
x1\(^2\)+x2\(^2\)=9
<=> (x\(_1\)+x\(_2\))\(^2\)-2x\(_1\).x\(_2\)=9
<=>16-2m+4=9
<=>2m=1
<=> m=\(\dfrac{1}{2}\)
Vậy m =\(\dfrac{1}{2}\) thì pt(1) có 2 nghiệm thõa mãn x\(_1\)\(^2\)+ x\(_2\)\(^2\)=9
Câu b á 0≤x≤4 nha
a) \(\sqrt{x}< 3\)<=> x<9
b)\(\sqrt{4-x}\) ≤ 2 <=> 4 - x ≤ 4 <=> x≥0
c)\(\sqrt{x+2}=\sqrt{4-x}\) <=> x+2=4-x <=>2x=2<=>x=1
Vậy x=1
d)\(\sqrt{x^2-1}\)=x-1 <=> x\(^2\)-1=x\(^2\)-2x+1 <=> x\(^2\)-\(x^2\)-2x+1+1=0 <=> 2x=2 <=> x=1
24 cách
Kết luận giùm mình nha ^^