Cho (O), từ điểm A nằm ngoài đường tròn kẻ tiếp tuyến AB, AC với đường tròn. I là điểm thuộc cung nhỏ BC, từ I kẻ ID, IE, IF vuông góc với AB, BC, AC; IB cắt DE tại M, IC cắt EF tại N
a) Chứng minh tứ giác BEID và tứ giác CEIF nội tiếp
b) Chứng minh tam giác IDE đồng dạng với tam giác IEF
c) Chứng minh IE vuông góc với MN
cho 2 đường tròn (O; r) và (O' r') cắt nhau tại 2 điểm A, B (r'>r). Tiếp tuyến chung MN tiếp xúc với 2 đường tròn (O) và (O') lần lượt tại M, N (A, M, N nằm trên cùng một nửa mặt phẳng bờ OO'). Đường thẳng MN cắt OO' tại I
a) Chứng minh tam giác IOM đồng dạng với tam giác IO'N
b) gọi C là giao điểm của đường thẳng IA với đường thẳng d, d đi qua O và song sóng với O'A. Chứng minh C nằm trên (O)
c) Chứng minh IA tiếp xúc với đường tròn ngoại tiếp tam giác AMN
Cho parabol (P) \(y=\dfrac{1}{2}x^2\) và điểm A, B thuộc (P) có hoành độ lần lượt là: -1, 2. Đường thẳng (d) phương trình y=mx+n
a) Tìm tọa độ điểm A, B. Tìm m, n biết (d) đi qua A và B.
b) Tính độ dài đường cao OH của tam giác OAB (điểm O là gốc tọa độ)
Cho tam giác ABC có ba góc nhọn và AB>AC. Tam giác ABC nội tiếp đường tròn (O;R). Đường cao AH của tam giác ABC cắt đường tròn (O;R) tại điểm thứ hai là D. Kẻ DM vuông góc với AB tại M.
a) Chứng minh tứ giác BDHM nội tiếp đường tròn.
b) Chứng minh DA là tia phân giác của \(\widehat{MDC}\)
c) Gọi N là hình chiếu vuông góc của D lên đường thẳng AC, chứng minh ba điểm M, H, N thẳng hàng.
d) Chứng minh \(AB^2+AC^2+CD^2+BD^2=8R^2\)