Cho đường tròn (O) và điểm S nằm bên ngoài đường tròn. Từ S kẻ tiếp tuyến SA và cát tuyến SBC tới đường tròn. Phân giác của góc BAC cắt BC ở D, cắt đường tròn ở E. Kẻ tiếp tuyến SA’ với đường tròn (O). Gọi H là giao điểm OS và AA’ , G là giao của OE và BS; F là giao của AA’ với BC. Trên tia AC lấy điểm Q sao cho AQ = AB. Chứng minh AO vuông góc DQ.
Cho đường tròn (O) bán kính OA. Gọi M là trung điểm của OA dây BC vuông góc với OA tại M. Từ B và C kẻ 2 tiếp tuyến với đường tròn (O) chúng cắt nhau tại D
a) Vẽ đường kính CON. chứng minh MN//OD
B) Gọi E là 1 điểm bất kì trên đường thẳng đi qua các trung điểm của DB và DC. kẻ tiếp tuyến EK của (O) chứng minh EK=ED
Cho tam giác ABC vuông tại A (AB<AC) nội tiếp đường tròn (O) có BC là đường kính. Trên nửa mặt phẳng bờ BC chứa điểm A. Kẻ các tiếp tuyến Bx,Cy với đường tròn (O) (BC là tiếp điểm). Từ A kẻ tiếp tuyến với đường tròn (o) cắt Cy tại K. Gọi D là giao điểm của đường thẳng AC và tiếp tuyến Bx
a) Chứng minh góc KAB= góc OAD
b) Gọi E là giao điểm của BK và AC. Chứng minh OE vuông góc với DK