1.
\(\int\limits^3_2\dfrac{x+1}{x^2+x-2}dx=\int\limits^3_2\dfrac{x+1}{\left(x-1\right)\left(x+2\right)}dx=\int\limits^3_2\left(\dfrac{1}{3\left(x+2\right)}+\dfrac{2}{3\left(x-1\right)}\right)dx\)
\(=\left(\dfrac{1}{3}ln\left|x+2\right|+\dfrac{2}{3}ln\left|x-1\right|\right)|^3_2=\dfrac{1}{3}ln5\)
\(\Rightarrow a=0;b=0;c=\dfrac{1}{3}\)
2.
Đặt hệ trục Oxyz vào chóp với \(A\left(0,0,0\right);B\left(2,0,0\right);D\left(0,3,0\right),C\left(2,3,0\right),S\left(0,0,3\right)\)
Quy ước a là 1 đơn vị độ dài
\(\Rightarrow\overrightarrow{SC}=\left(2,3,-3\right);\overrightarrow{SD}=\left(0,3,-3\right);\overrightarrow{SB}=\left(2,0,-3\right)\)
\(\Rightarrow\overrightarrow{n_{\left(SCD\right)}}=\left[\overrightarrow{SC},\overrightarrow{SD}\right]=6.\left(0,1,1\right)\)
\(\overrightarrow{n_{\left(SCB\right)}}=\left[\overrightarrow{SC},\overrightarrow{SB}\right]=-3.\left(3,0,2\right)\)
\(cos\alpha=\dfrac{\left|0.3+1.0+1.2\right|}{\sqrt{1^2+1^2}.\sqrt{3^2+2^2}}=\dfrac{\sqrt{26}}{13}\)
\(\Rightarrow\alpha\approx67^0\)