HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
b)
Áp dụng định lý Py-ta-go cho tam giác vuông ABC. Ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow15^2+20^2=BC^2\)
\(\Leftrightarrow BC=25\)
Ta có: \(\text{ΔABC ∼ ΔHBA }\) (cm câu a)
\(\Rightarrow\dfrac{AC}{AH}=\dfrac{BC}{AB}=\dfrac{AB}{BH}\)
⇔ \(\dfrac{AH}{AC}=\dfrac{AB}{BC}=\dfrac{BH}{AB}\)
⇔ \(\dfrac{AH}{20}=\dfrac{15}{25}=\dfrac{BH}{15}\)
\(\Rightarrow\left\{{}\begin{matrix}AH=12\\BH=9\end{matrix}\right.\)
⇒ \(CH=BC-BH=25-9=16\)
a)
Xét \(\Delta ABC\) và \(\Delta HBA\) có:
\(\widehat{B}:chung\)
\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right)\)
\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\) \(\left(ĐPCM\right)\)
A B C H D
\(x^2+x^3=0\)
\(\Leftrightarrow x^2\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2=0\\x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy...
y x z t
Ta có: \(\widehat{xOy}=60^o\)
⇔ \(\widehat{xOz}+\widehat{zOy}=60^o\)
Mà \(\widehat{xOy}=3.\widehat{zOy}\)
⇒ \(4.\widehat{zOy}=60^o\)
⇔ \(\widehat{zOy}=15^o\)
⇒ \(\widehat{xOz}=3.15^o=45^o\)
Lại có: \(\widehat{xOt}=10.\widehat{zOy}\)
⇔ \(\widehat{xOt}=150^o\)
Ta có: \(\widehat{tOz}=\widehat{xOt}-\widehat{xOz}\)
⇔ \(\widehat{tOz}=150^o-45^o\)
⇔ \(\widehat{tOz}=105^o\)
Ơ, s tui k thấy j cả. Câu hỏi đâu??
Ta có: \(\Delta ADB\sim\Delta AEC\) (cm câu a)
⇒ \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)
⇔ \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
Xét \(\Delta ADE\) và \(\Delta ABC\) có:
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
\(\widehat{A}\) : chung
⇒ \(\Delta ADE\sim\Delta ABC\) \(\left(c.g.c\right)\)
⇒ \(\widehat{AED}=\widehat{ACB}\) (2 góc tương ứng)
⇒ \(ĐPCM\)