a)
Xét \(\Delta ABC\) và \(\Delta HBA\) có:
\(\widehat{B}:chung\)
\(\widehat{BAC}=\widehat{BHA}\left(=90^o\right)\)
\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\) \(\left(ĐPCM\right)\)
b)
Áp dụng định lý Py-ta-go cho tam giác vuông ABC. Ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow15^2+20^2=BC^2\)
\(\Leftrightarrow BC=25\)
Ta có: \(\text{ΔABC ∼ ΔHBA }\) (cm câu a)
\(\Rightarrow\dfrac{AC}{AH}=\dfrac{BC}{AB}=\dfrac{AB}{BH}\)
⇔ \(\dfrac{AH}{AC}=\dfrac{AB}{BC}=\dfrac{BH}{AB}\)
⇔ \(\dfrac{AH}{20}=\dfrac{15}{25}=\dfrac{BH}{15}\)
\(\Rightarrow\left\{{}\begin{matrix}AH=12\\BH=9\end{matrix}\right.\)
⇒ \(CH=BC-BH=25-9=16\)
c)
Xét \(\Delta ABC\) có AD là tia phân giác của \(\widehat{BAC}\) \(\left(D\in BC\right)\)
⇒ \(\dfrac{CD}{BD}=\dfrac{AC}{AB}\)
⇔ \(\dfrac{CD}{BC-CD}=\dfrac{AC}{AB}\)
⇔ \(\dfrac{CD}{25-CD}=\dfrac{20}{15}\)
⇔ \(\dfrac{CD}{25-CD}=\dfrac{4}{3}\)
⇒ \(100-4.CD=3.CD\)
⇔ \(7.CD=100\)
⇔ \(CD=\dfrac{100}{7}\)
⇒ \(BD=BC-CD=25-\dfrac{100}{7}=\dfrac{75}{7}\)