HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
lúc đầu Huy có số viên bi là : (38+15)x2=106
uk làm thế nào
32.tick
Ta có: \(x+y=m\) \(\Rightarrow x^2+y^2+2xy=m^2\) \(\Leftrightarrow\left(-m^2+6\right)+2xy=m^2\) \(\Leftrightarrow xy=m^2-3\)
Vậy \(P=xy+2\left(x+y\right)=m^2+2m-3=\left(m+1\right)^2-4\ge-4\) Dấu "=" xảy ra khi \(m=-1\). Kiểm lại, với \(m=-1\), \(\left(x,y\right)\) là \(\left(-2;1\right)\) hay \(\left(1;-2\right)\).
x = 1 hoặc 0
tick đi bạn
a) Điều kiện cần có: \(\left\{{}\begin{matrix}x>0\\\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\ne0\end{matrix}\right.\) Ta có:\(\left\{{}\begin{matrix}\sqrt{x}-\dfrac{1}{\sqrt{x}}=\dfrac{x-1}{\sqrt{x}}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}\\\dfrac{\sqrt{x}-1}{\sqrt{x}}+\dfrac{1-\sqrt{x}}{x+\sqrt{x}}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}+\dfrac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)} =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\end{matrix}\right.\)Từ đó thế vào bài cho ta:
\(P=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}}:\dfrac{\sqrt{x}-1}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)
b) Ta có: \(x=\dfrac{2}{2+\sqrt{3}}=\dfrac{2\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}=4-2\sqrt{3}\) \(\Leftrightarrow\sqrt{x}=\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\) \(\Leftrightarrow\dfrac{1}{\sqrt{x}}=\dfrac{1}{\sqrt{3}-1}=\dfrac{\sqrt{3}+1}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}=\dfrac{\sqrt{3}+1}{2}\)
Đưa vào bài, ta có: \(P=\left(\sqrt{3}-1+1\right)^2.\dfrac{\sqrt{3}+1}{2}=\dfrac{3\sqrt{3}+3}{2}\)
tiểu học hay trung học cơ sở