Cho đường tròn (O;R) và dây cung BC không đi qua tâm. Gọi A là điểm chính giữa của cung nhỏ BC. Góc nội tiếp quay quanh điểm A và có số đo không đổi sao cho E,F khác phía với điểm A so với BC;AF và AE cắt đường thẳng BC lần lượt tại M và N. Lấy điểm D sao cho tứ giác MNED là hình bình hành.
a. Chứng minh MNEF là tứ giác nội tiếp. b. Gọi I là tâm đường tròn ngoại tiếp tam giác MDF. Chứng minh rằng khi góc nội tiếp EAF quay quanh điểm A thì I chuyển động trên một đường thẳng cố định. c. Khi EAF= 60và BC=R, tính theo R độ dài nhỏ nhất của đoạn OICho tam giác ABC và điểm D di chuyển trên cạnh BC (D khác B và C). Đường tròn (O1) đi qua D và tiếp xúc AB tại B. Đường tròn (O2) đi qua D và tiếp xúc AC tại C. Gọi E là giao điểm thứ hai của (O1) và (O2).
a) Chứng minh rằng khi D di động trên đoạn BC thì đường thẳng ED luôn đi qua một điểm cố định.