HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
cho x.y.z>0 và xy+yz+xz=5
Tìm GTNN của \(A=3x^2+3y^2+z^2\)
cho a,b,c>0 và a+b+c=1
Tìm GTNN của \(A=\frac{a^3}{\left(1-a\right)^2}+\frac{b^3}{\left(1-b\right)^2}+\frac{c^3}{\left(1-c\right)^2}\)
cho \(a\ge10,b\ge100,c\ge1000\)
tìm GTNN của \(A=a+\frac{1}{a}+b+\frac{1}{b}+c+\frac{1}{c}\)
cho x,y,z>0 và xyz=1. Cmr: \(\frac{x^2}{1+y}+\frac{y^2}{1+z}+\frac{z^2}{1+x}\ge\frac{3}{2}\)
cho x+2y ≤ 16
Tìm GTNN của \(P=\frac{9}{y}+\frac{8}{x}+\frac{x}{6}-\frac{5y}{12}+2020\)
cho a,b,c>0 thỏa mãn a+b+c=1
Cmr: \(\frac{1}{a+b^2}+\frac{1}{b+c^2}+\frac{1}{c+a^2}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
cho x,y,z>0 thỏa mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\)
Cmr: \(\sqrt{\frac{xy}{x+y+2z}}+\sqrt{\frac{yz}{y+z+2x}}+\sqrt{\frac{xz}{x+z+2y}}\le\frac{1}{2}\)
cho a,b,c>0. Cmr:
\(\frac{a}{a+\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{b+\sqrt{\left(b+a\right)\left(b+c\right)}}+\frac{c}{c+\sqrt{\left(c+a\right)\left(c+b\right)}}\le1\)
cho a,b,c >0 thỏa mãn \(b^2+c^2\le a^2\)
Tìm GTNN của \(P=\frac{1}{a^2}\left(b^2+c^2\right)+a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)\)
cho x,y,z> 0 thỏa mãn \(x^3+y^3+z^3=1\)
Cmr: \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\)