HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
cho a,b,c > 0 thỏa mãn abc =1. Cmr: \(\frac{1}{\sqrt{ab+a+2}}+\frac{1}{\sqrt{bc+b+2}}+\frac{1}{\sqrt{ca+c+2}}\le\frac{3}{2}\)
giả sử \(f\left(n+1\right)=n.\left(-1\right)^{n+1}-2f\left(n\right)\), với n ∉ Z và f(1) = f (2018)
Tính : \(f\left(1\right)+f\left(2\right)+f\left(3\right)+...+f\left(2017\right)\)
cho a,b,c là độ dài 3 cạnh của tam giác có chu vi bằng 1. Cmr:
\(\frac{2}{9}\le a^3+b^3+c^3+3abc< \frac{1}{4}\)
cho a,b,c là độ dài 3 cạnh của tam giác. Tìm GTNN của
\(\frac{4a}{b+c-a}+\frac{9b}{a+c-b}+\frac{16c}{a+b-c}\)
cho x,y,z thỏa mãn xy+yz+xz=1. Tìm GTLN của \(A=x^2+8y^2+z^2\)
cho x,y,z > 0 thỏa mãn \(x^2+y^2+z^2=2\) . Cmr:
\(\frac{2}{x^2+y^2}+\frac{2}{y^2+z^2}+\frac{2}{z^2+x^2}\le\frac{x^3+y^3+z^3}{2xyz}+3\)
cho x,y,z > 0. Cmr: \(\frac{2x}{x^6+y^4}+\frac{2y}{y^6+z^4}+\frac{2z}{z^6+x^4}\le\frac{1}{x^4}+\frac{1}{y^4}+\frac{1}{z^4}\)
cho a,b,c > 0 . Cmr: \(A=\frac{a}{3a+b+c}+\frac{b}{3b+a+c}+\frac{c}{3c+a+b}\le\frac{3}{5}\)
cho x,y,z > 0 . Cmr: \(\frac{x^4}{y^2\left(x+z\right)}+\frac{y^4}{z^2\left(x+y\right)}+\frac{z^4}{x^2\left(y+z\right)}\ge\frac{x+y+z}{2}\)
cho a,b,c > 0 thỏa mãn \(a+b+c\le\frac{3}{2}\)
Tìm GTNN của \(A=\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\)