HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
cuối bài? :D
P/s câu 5 :D Clo chiếm 55,045 % khối lượng chứ nhỉ?
\(C_nH_{2n+2}+Cl_2\rightarrow C_nH_{2n}Cl+HCl\) (1:1)
\(\%Cl=\dfrac{35,5}{14n+36,5}\times100\%=55,045\%\)
\(\Rightarrow n=2\)
Ankan là: C2H6
câu 6: \(C_nH_{2n+2}+Br_2\rightarrow C_nH_{2n+1}Br+HBr\)
Dẫn xuất brom có dạng: \(C_nH_{2n+1}Br\)
\(M=75,5x2\)
\(\Rightarrow14n+81=151\Rightarrow n=5\)
ankan là: C5H12
đề chưa chặt: nếu chỉ có 1 dẫn xuất monobrom thì đáp án nên là 2,2- đi propan ( theo tên IUPAC ) hoặc Neo - pentan ( theo tên thông thường )
bài 1 bạn có thể tham khảo đề bài và cách làm tại đây: https://olm.vn/hoi-dap/detail/192520612926.html
1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D
thử bài bất :D
Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)
Hoàn toàn tương tự:
\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)
\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)
Cộng (*),(**),(***) vế theo vế ta được:
\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)
Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )
Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=1
thiếu đề không?
\(\dfrac{a}{\sqrt{b}}+\dfrac{b}{\sqrt{a}}=\left(\dfrac{a}{\sqrt{b}}+\sqrt{b}\right)+\left(\dfrac{b}{\sqrt{a}}+\sqrt{a}\right)-\left(\sqrt{a}+\sqrt{b}\right)\)
Áp dụng bất AM-GM: \(\ge2\sqrt{a}+2\sqrt{b}-\left(\sqrt{a}+\sqrt{b}\right)=\sqrt{a}+\sqrt{b}\left(đpcm\right)\)
Bổ đề: \(a^3+b^3+c^3\ge\dfrac{1}{9}\left(a+b+c\right)^3\) \(\left(\forall a,b,c>0\right)\)
chứng minh bổ đề: \(\Sigma_{cyc}\left(\dfrac{a^3}{a^3+b^3+c^3}\right)+\dfrac{1}{3}+\dfrac{1}{3}\ge3\sqrt[3]{\left(\Pi_{cyc}\dfrac{a^3}{a^3+b^3+c^3}\right).\dfrac{1}{3}.\dfrac{1}{3}}\)
hoán vị theo a,b,c
ta được: \(3\ge\dfrac{3\left(a+b+c\right)}{\sqrt[3]{9.\left(a^3+b^3+c^3\right)}}\)
mũ 3 hai vế ta có được bất đẳng thức bổ đề: \(a^3+b^3+c^3\ge\dfrac{1}{9}\left(a+b+c\right)^3\)
Áp dụng bất C-S:
\(\sqrt{a^3+3b}+\sqrt{b^3+3c}+\sqrt{c^3+3a}\ge\sqrt{\left(1+1+1\right)\left(a^3+b^3+c^3+3a+3b+3c\right)}\)
\(\ge\sqrt{3.\left[3+3\left(a+b+c\right)\right]}=\sqrt{36}=6\)
Dấu "=" xảy ra tại a=b=c=1
dòng thứ 2 hơi bị lỗi xin lỗi nha :D không phải sigma đâu
bất của bạn thiếu điều kiện a,b,c>0
lần đầu lóng ngóng mấy sư huynh chỉ giáo :D
việc tách ghép hoàn toàn dựa vào điểm rơi và tách ghép 1 cách hợp ní
\(\Sigma_{cyc}\left(\dfrac{a^3}{a^3+b^3+c^3}\right)+\dfrac{1}{3}+\dfrac{1}{3}\ge3\sqrt[3]{\Pi_{cyc}\dfrac{a^3}{a^3+b^3+c^3}.\dfrac{1}{3}.\dfrac{1}{3}}\) \(=\dfrac{\Sigma_{cyc}3a}{\sqrt[3]{9.\left(a^3+b^3+c^3\right)}}\)
Ta được: \(1+2\ge\dfrac{3\left(a+b+c\right)}{\sqrt[3]{9.\left(a^3+b^3+c^3\right)}}\)
Từ đây dễ chứng minh được bằng cách mũ 3 hai vế và ta được điều phải chứng minh:
\(9\left(a^3+b^3+c^3\right)\ge\left(a+b+c\right)^3\)
Dấu "=" xảy ra khi a=b=c