HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
a)
\(3x^2+2x-1=0\)
\(\Leftrightarrow3x^2-x+3x-1=0\)
\(\Leftrightarrow x\left(3x-1\right)+\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-1\end{matrix}\right.\)
b)
\(x^2-5x+6=0\)
\(\Leftrightarrow x^2-3x-2x+6=0\)
\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
Áp dụng BĐT \(x^2+y^2\ge\dfrac{1}{2}\left(x+y\right)^2\) và BĐT \(xy\le\dfrac{1}{4}\left(x+y\right)^2\), ta có:
\(\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2\)
\(\ge\dfrac{1}{2}\left(x+\dfrac{1}{x}+y+\dfrac{1}{y}\right)^2\)\(=\dfrac{1}{2}\left(1+\dfrac{x+y}{xy}\right)^2\)
\(\ge\dfrac{1}{2}\left(1+\dfrac{1}{\dfrac{1}{4}\left(x+y\right)^2}\right)^2=\dfrac{25}{2}\left(x+y=1\right)\)
Dấu "=" xảy ra khi x = y = 0,5
Áp dụng BĐT Cauchy Schwarz, BĐT AM - GM và BĐT \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\), ta có:
\(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(a+c\right)}+\dfrac{1}{c^3\left(a+b\right)}\)
\(\ge\dfrac{\left(1+1+1\right)^2}{a^3\left(b+c\right)+b^3\left(a+c\right)+c^3\left(a+b\right)}\)
\(\ge\dfrac{3^2}{3\sqrt[3]{a^3b^3c^3\left(b+c\right)\left(a+c\right)\left(a+b\right)}}\)
\(\ge\dfrac{3^2}{3\sqrt[3]{8abc}}=\dfrac{3}{2}\left(abc=1\right)\)
Dấu "=" xảy ra khi a = b = c = 1
Câu 2:
Sửa lại đề: Cho đa thức bậc ba f(x) sao cho f(x) chia x2 + 1 dư 2x + 3 và chia x2 + 2x dư - 3x + 2. Tính f(2013)
Đặt f(x) = ax3 + bx2 + cx + d, ta có:
(ax3 + bx2 + cx + d) : (x2 + 1) dư (c - a)x + (d - b)
(ax3 + bx2 + cx + d) : (x2 + 2x) dư \(\left[c-2\left(b-2a\right)\right]x+d=\left(c-2b+4a\right)x+d\)
Theo đê bài \(\Rightarrow\left\{{}\begin{matrix}\left(c-a\right)x+\left(d-b\right)=2x+3\\\left(c-2b+4a\right)x+d=-3x+2\end{matrix}\right.\)
Áp dụng định lí Bezout, ta có:
\(\left\{{}\begin{matrix}c-a=2\\d-b=3\\c-2b+4a=-3\\d=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{7}{5}\\b=-1\\c=\dfrac{3}{5}\\d=2\end{matrix}\right.\)
\(\Rightarrow f\left(x\right)=-\dfrac{7}{5}x^3-x^2+\dfrac{3}{5}x+2\)
Đặt \(\sqrt{x}=a\left(a>0;a\ne1\right)\), ta có:
\(A=\dfrac{a^4+a^2+1}{a^2+a+1}=\dfrac{a^4-a+a^2+a+1}{a^2+a+1}\)
\(=\dfrac{a\left(a^3-1\right)}{a^2+a+1}+\dfrac{a^2+a+1}{a^2+a+1}\)
\(=\dfrac{a\left(a-1\right)\left(a^2+a+1\right)}{a^2+a+1}+1\)
\(=a\left(a-1\right)+1=a^2-a+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(x=\dfrac{1}{4}\)
Để a chia hết cho 2 thì a \(\in\){0,2,4,6,8}Để a chia cho 5 dư 3 thì a = 8Vậy a = 8
gà 22
chó 14
Coi x=20k, y=20h
xy=20k.20h=400.h.k =420...
Tên: Thiên Băng
Lớp: 8
Link: hoc24.vn/vip/somuchiloveyou