HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
15 con ga
9 con lon
tick cho mih xong mih cho loi giai
\(\left\{{}\begin{matrix}ab=2\\bc=3\\ac=54\end{matrix}\right.\Rightarrow\left(abc\right)^2=2\cdot3\cdot54=324\)
\(\Rightarrow\left[{}\begin{matrix}abc=\sqrt{324}\\abc=-\sqrt{324}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}abc=18\\abc=-18\end{matrix}\right.\)
Nếu abc = 18
\(\Rightarrow\left\{{}\begin{matrix}c=\dfrac{18}{2}=9\\a=\dfrac{18}{3}=6\\b=\dfrac{18}{54}=\dfrac{1}{3}\end{matrix}\right.\)
Nếu abc = -18
\(\Rightarrow\left\{{}\begin{matrix}c=-\dfrac{18}{2}=-9\\a=-\dfrac{18}{3}=-6\\b=-\dfrac{18}{54}=-\dfrac{1}{3}\end{matrix}\right.\)
Vậy \(\left(a,b,c\right)=\left(-6;-\dfrac{1}{3};-9\right);\left(6;\dfrac{1}{3};9\right)\)
\(y\in N\) => 3y lẻ
Mà 242 chẵn => 2x lẻ
=> x = 0
=> 20 + 242 = 3y
<=> 1 + 242 = 3y
<=> 243 = 3y <=> y = 5
Gọi ba phần đó là a,b,c
=> 5a = 2b = 4c và a3 + b3 + c3 = 9512
\(5a=2b=4c\Rightarrow\dfrac{a}{\dfrac{1}{5}}=\dfrac{b}{\dfrac{1}{2}}=\dfrac{c}{\dfrac{1}{4}}\Rightarrow\dfrac{a^3}{\dfrac{1}{125}}=\dfrac{b^3}{\dfrac{1}{8}}=\dfrac{c^3}{\dfrac{1}{64}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a^3}{\dfrac{1}{125}}=\dfrac{b^3}{\dfrac{1}{8}}=\dfrac{c^3}{\dfrac{1}{64}}=\dfrac{a^3+b^3+c^3}{\dfrac{1}{125}+\dfrac{1}{8}+\dfrac{1}{64}}=\dfrac{9512}{\dfrac{1189}{8000}}=64000\)
\(\Rightarrow\left\{{}\begin{matrix}a^3=\dfrac{64000}{125}=512\\b^3=\dfrac{64000}{8}=8000\\c^3=\dfrac{64000}{64}=1000\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=8\\b=20\\c=10\end{matrix}\right.\)
=> A = 8 + 20 + 10 = 38
Ta có:
\(\frac{abc}{a+bc}\)=\(\frac{bca}{b+ca}\)
<=>\(\frac{abc}{bca}=\frac{a+bc}{b+ca}\)
=>\(\frac{a+bc}{b+ca}\)=>\(\frac{a}{b}=\frac{bc}{ca}\)(tính chất dãy tỉ số bằng nhau)<=>\(\frac{a}{bc}=\frac{b}{ca}\)(đpcm)
2009 chia 3 dư 2
1010 = 10..000 chia 3 dư 1
=> 2009 + 1010 chia hết cho 3
Vậy 2009 + 1010 là hợp số
chuối đỏ = chó đuổi => quay về
\(\dfrac{\dfrac{2}{5}}{3x}=\dfrac{\dfrac{2}{3}}{\dfrac{4}{5}}\Leftrightarrow\dfrac{2}{5}\cdot\dfrac{4}{5}=3x\cdot\dfrac{2}{3}\Leftrightarrow\dfrac{8}{25}=3x\cdot\dfrac{2}{3}\Leftrightarrow3x=\dfrac{\dfrac{8}{25}}{\dfrac{2}{3}}=\dfrac{12}{25}\Leftrightarrow x=\dfrac{4}{25}\)
\(\left(x+5\right)+\left(x-9\right)=x+2\)
=> x+5 +x - 9 = x + 2
=> 2x - 4 = x+2
=> 2x - x = 2 + 4
=> x = 6
a.
\(\left(3x-5\right)^2=\dfrac{25}{9}\)
\(\Rightarrow\left[{}\begin{matrix}3x-5=\sqrt{\dfrac{25}{9}}\\3x-5=-\sqrt{\dfrac{25}{9}}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x-5=\dfrac{5}{3}\\3x-5=-\dfrac{5}{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{20}{9}\\x=\dfrac{10}{9}\end{matrix}\right.\)
Vậy:............
b.
\(\left\{{}\begin{matrix}\left(x-2\right)^{2018}\ge0\\\left|y^2-9\right|^{2014}\ge0\\\left(x-2\right)^{2018}+\left|y^2-9\right|^{2014}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^{2018}=0\\\left|y^2-9\right|^{2014}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=\pm3\end{matrix}\right.\)