HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
khó hiểu chỗ nào
\(VT=\left(a+bi\right)^2+\left(a-bi\right)^2\\ =a^2+2abi-b^2+a^2-2abi-b^2\\ =2a^2-2b^2\\ =2\left(a^2-b^2\right)=VP\)
\(VT=\left(a+bi\right)^2-\left(a-bi\right)^2\\ =a^2+2abi-b^2-\left(a^2-2abi-b^2\right)\\ =a^2+2abi-b^2-a^2+2abi+b^2\\ =4abi=VP\)
\(VT=\left(a+bi\right)^2\left(a-bi\right)^2\\ =\left[\left(a+bi\right)\left(a-bi\right)\right]^2\\ =\left[a^2-\left(bi\right)^2\right]^2\\ =\left(a^2+b^2\right)^2=VP\)
\(-2\dfrac{2}{3}\cdot a=\dfrac{36}{5}\\ \Leftrightarrow\dfrac{-8}{3}\cdot a=\dfrac{36}{5}\\ \Leftrightarrow a=\dfrac{36}{5}:\dfrac{-8}{3}\\ \Leftrightarrow a=\dfrac{36}{5}\cdot\dfrac{-3}{8}\\ \Leftrightarrow a=\dfrac{-27}{10}\)
\(\left(-3\right)\left(-x\right)=-9\\ \Leftrightarrow-x=\left(-9\right):\left(-3\right)\\ \Leftrightarrow-x=3\\ \Leftrightarrow x=-3\)
\(\left(-3\right)^x=-27\\ \Leftrightarrow\left(-3\right)^x=\left(-3\right)^3\\ \Leftrightarrow x=3\)
ta co: -(a-b+c)-(-a+b+c)+(-a-c-2b)=(-a)+b+(-c)+a-b-c-a-c-2b
=(-a)+a+b-b+(-c)-c-c-a-2b
=(-3c)+(-a)+(-2b)
Tick cho ming nha
\(A=3^1+3^2+3^3+...+3^{2017}\\ 3A=3^2+3^3+3^4+...+3^{2018}\\ 3A-A=\left(3^2+3^3+3^4+...+3^{2018}\right)-\left(3^1+3^2+3^3+...+3^{2018}\right)\\ 2A=3^{2018}-3\\ A=\dfrac{3^{2018}-3}{2}\)
\(2A+3=3^x\\ \Leftrightarrow3^{2018}-3+3=3^x\\ \Leftrightarrow3^{2018}=3^x\\ \Leftrightarrow x=2018\)
\(\left|x+2\right|\ge0\\ \Leftrightarrow-\left|x+2\right|\le0\\ \Leftrightarrow-\left|x+2\right|-11\le-11\)
Dấu "=" xảy ra khi:
\(\left|x+2\right|=0\\ \Leftrightarrow x+2=0\\ \Leftrightarrow x=-2\)
Vậy \(\max\limits_A=-11\text{ khi }x=-2\)