Giải:
Vì tích \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)\) là một số âm nên phải có \(1\) số âm hoặc \(3\) số âm
Ta có: \(x^2-10< x^2-7< x^2-4< x^2-1\)
Ta xét \(2\) trường hợp sau:
Trường hợp \(1\): Có \(1\) số âm:
\(x^2-10< x^2-7\Rightarrow x^2-10< 0< x^2-7\)
\(\Rightarrow7< x^2< 10\Rightarrow x^2=9\Rightarrow x=\pm3\)
Trường hợp \(2\): Có \(3\) số âm:
\(x^2-4< x^2-1\Rightarrow x^2-4< 0< x^2-1\)
\(\Rightarrow1< x^2< 4\) Mà \(x\in Z\) nên không tồn tại \(x\)
Vậy \(x=\pm3\)