HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Câu 1b/ ta có: \(\left\{{}\begin{matrix}3x+y=5\\x-2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\left(-3+2y\right)+y=5\\x-2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7y-9=5\\x-2y=-3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=2\\x-2y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=1\end{matrix}\right.\)
câu 2:
ta có:
\(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)
\(P=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)^2}\)
\(P=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
\(P=\dfrac{x-1}{x}\)
câu 5; ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\ge\dfrac{4}{2\sqrt{2}}=\sqrt{2}\)
câu 3:
ta có: \(\sqrt{6}< \sqrt{9}\Leftrightarrow\sqrt{6}< 3\Leftrightarrow6+\sqrt{6}< 6+3\Leftrightarrow6+\sqrt{6}< 9\)
\(\Leftrightarrow\sqrt{6+\sqrt{6}}< 3\Leftrightarrow6+\sqrt{6+\sqrt{6}}< 3+6\Leftrightarrow6+\sqrt{6+\sqrt{6}}< 9\Leftrightarrow\sqrt{6+\sqrt{6+\sqrt{6}}}< 3\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)
\(\Leftrightarrow\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-\dfrac{1}{x+y+z}=0\)
\(\Leftrightarrow\dfrac{x+y}{xy}+\dfrac{x+y+z-z}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\dfrac{1}{xy}+\dfrac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(\dfrac{xz+yz+z^2+xy}{xyz\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(\dfrac{\left(y+z\right)\left(x+z\right)}{xyz\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\\dfrac{\left(y+z\right)\left(x+z\right)}{xyz\left(x+y+z\right)}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x+y=0\\y+z=0\\x+z=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-y\\y=-z\\z=-x\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^8=\left(-y\right)^8\\y^9=\left(-z\right)^9\\z^{10}=\left(-x\right)^{10}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x^8-y^8=0\\y^9+z^9=0\\x^{10}-z^{10}=0\end{matrix}\right.\)\(\Rightarrow\left(x^8-y^8\right)\left(y^9+z^9\right)\left(z^{10}-x^{10}\right)=0\)
\(\Rightarrow M=\dfrac{3}{4}\)