Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Thúy Vy

Giúp mình thêm bài này nữa

Cho a,b,c > 0 thoả mãn :

\(ab+bc+ca=2abc\)

Tìm giá trị nhỏ nhất của biểu thức :

\(P=\dfrac{1}{a\left(2a-1\right)^2}+\dfrac{1}{b\left(2b-1\right)^2}+\dfrac{1}{c\left(2c-1\right)^2}\)

Kuro Kazuya
18 tháng 5 2017 lúc 14:33

Ta có \(ab+bc+ca=2abc\)

\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=2\)

Đặt \(\left\{{}\begin{matrix}x=\dfrac{1}{a}\\y=\dfrac{1}{b}\\z=\dfrac{1}{c}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y+z=2\\P=\dfrac{x^3}{\left(2-x\right)^2}+\dfrac{y^3}{\left(2-y\right)^3}+\dfrac{z^3}{\left(2-z\right)^2}\end{matrix}\right.\)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\dfrac{x^3}{\left(2-x\right)^2}+\dfrac{2-x}{8}+\dfrac{2-x}{8}\ge3\sqrt[3]{\dfrac{x^3}{64}}=\dfrac{3x}{4}\)

Tượng tự ta có \(\left\{{}\begin{matrix}\dfrac{y^3}{\left(2-y\right)^2}+\dfrac{2-y}{8}+\dfrac{2-y}{8}\ge\dfrac{3y}{4}\\\dfrac{z^3}{\left(2-z\right)^2}+\dfrac{2-z}{8}+\dfrac{2-z}{8}\ge\dfrac{3z}{8}\end{matrix}\right.\)

\(\Rightarrow P+\dfrac{12-2\left(x+y+z\right)}{8}\ge\dfrac{3}{4}\left(x+y+z\right)\)

\(\Rightarrow P\ge\dfrac{1}{2}\)

Dấu " = " xảy ra khi \(x=y=z=\dfrac{2}{3}\)


Các câu hỏi tương tự
Phạm Thúy Vy
Xem chi tiết
Edogawa Conan
Xem chi tiết
Sĩ Bí Ăn Võ
Xem chi tiết
Neet
Xem chi tiết
Xem chi tiết
Thái Viết Nam
Xem chi tiết
Sai Lầm Moon
Xem chi tiết
Võ Đông Anh Tuấn
Xem chi tiết
nguyễn phương ngọc
Xem chi tiết