HOC24
Lớp học
Môn học
Chủ đề / Chương
Bài học
Oh yeah! Mk chắc chắn lm đc câu 1!
Câu 2:
a) P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
ĐK : \(x\ge0;x\ne4\)
Ta có: P = \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)
= \(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\)
\(\dfrac{2+5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
= \(\dfrac{x+2\sqrt{x}+\sqrt{x}+3+2-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
= \(\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
b) Để P = 2 <=> \(\dfrac{3\sqrt{x}}{\sqrt{x}+2}=2\)
=> \(3\sqrt{x}=2\sqrt{x}+4\)
<=> \(\sqrt{x}=4\) <=> \(x=16\left(TM\right)\)
Vì 3-2=1 và 3-1=2 nên 1+2=3
Ta có: A = \(\sqrt{\left(\sqrt{6}-2\sqrt{2}\right)^2}-\sqrt{24-12\sqrt{3}}\)
= \(\left|\sqrt{6}-2\sqrt{2}\right|\) \(-\sqrt{18-2.6\sqrt{3}+6}\)
= \(2\sqrt{2}-\sqrt{6}-\sqrt{\left(\sqrt{18}-\sqrt{6}\right)^2}\)
= \(2\sqrt{2}-\sqrt{6}-\sqrt{18}+\sqrt{6}\)
= \(2\sqrt{2}-3\sqrt{2}=-\sqrt{2}\)