Bài 1: cho a, b > 0 và a + b <= 1. CMR: \(\dfrac{1}{3a^2+b^2}+\dfrac{2}{b^2+3ab}>=3\)
Bài 2: cho x, y, z >=0 thỏa mãn x + y + z >0. CMR: \(\dfrac{x}{4x+4y+z}+\dfrac{y}{4y+4z+x}+\dfrac{z}{4z+4x+y}< =\dfrac{1}{3}\)
Bài 3: cho x, y, z > 0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\)
Tìm GTNN của \(\dfrac{1}{\sqrt{2x^2+y^2+3}}+\dfrac{1}{\sqrt{2y^2+z^2+3}}+\dfrac{1}{\sqrt{2z^2}+x^2+3}\)
Bài 1 : cho x, y >0 và x2+y2=1. Tìm GTNN của \(P=\left(1+x\right)\cdot\left(1+\dfrac{1}{y}\right)+\left(1+y\right)\cdot\left(1+\dfrac{1}{x}\right)\)
Bài 2 : cho a, b, c > 0. CMR
\(\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}>=\dfrac{1}{2a+b+c}+\dfrac{1}{2b+a+c}+\dfrac{1}{2c+a+b}\)
Bài 3 : cho a, b, c, d >0. CMR
\(\dfrac{a+c}{a+b}+\dfrac{b+d}{b+c}+\dfrac{c+a}{c+d}+\dfrac{d+b}{d+a}>=4\)
Bài 1 : cho x1, x2, ....., x2019 > 0. Tìm GTNN của \(M=\dfrac{x_1^2+x_2^2+x_3^2+...+x_{2018}^2+x_{2019}^2}{\left(x_1+x_2+x_3+...+x_{2018}\right)\cdot x_{2019}}\)
Bài 2: cho x, y, z >0. tìm GTNN của \(A=4\cdot\left(x^2+y^2+z^2\right)+\dfrac{441}{x+2y+4z}\)