Gọi độ dài 3 cạnh của tam giác ABC lần lượt là a,b,c (đơn vị đo độ dài) \(\left(a,b,c>0\right)\)
Theo đề bài, ta có:
\(\frac{a}{6}=\frac{b}{8}=\frac{c}{10}\) và \(2b^2=c^2+28\)
Đặt \(\frac{a}{6}=\frac{b}{8}=\frac{c}{10}=k\left(k>0\right)\)
\(\Rightarrow\left\{\begin{matrix}a=6k\\b=8k\\c=10k\end{matrix}\right.\)
Ta có: \(2b^2=c^2+28\)
\(\Rightarrow2\times\left(8k\right)^2=\left(10k\right)^2+28\)
\(\Rightarrow2\times8^2\times k^2=10^2\times k^2+28\)
\(\Rightarrow2\times64\times k^2=100\times k^2+28\)
\(\Rightarrow128\times k^2=100\times k^2+28\)
\(\Rightarrow128\times k^2-100\times k^2=28\)
\(\Rightarrow28\times k^2=28\)
\(\Rightarrow k^2=28\div28\)
\(\Rightarrow k^2=1\)
mà \(k>0\)
\(\Rightarrow k=1\)
\(\Rightarrow\left\{\begin{matrix}a=6k\\b=8k\\c=10k\end{matrix}\right.\) \(\Rightarrow\left\{\begin{matrix}a=6\times1\\b=8\times1\\c=10\times1\end{matrix}\right.\) \(\Rightarrow\left\{\begin{matrix}a=6\\b=8\\c=10\end{matrix}\right.\)
Chu vi tam giác ABC là:
\(a+b+c=6+8+10=24\) (đơn vị đo độ dài)
Vậy chu vi tam giác ABC bằng 24 đơn vị đo độ dài.