\(3^4< \frac{1}{9}\times27^n\le3^{10}\)
\(\Rightarrow3^4< \frac{1}{3^2}\times\left(3^3\right)^n\le3^{10}\)
\(\Rightarrow3^4< 3^{-2}\times3^{3\times n}\le3^{10}\)
\(\Rightarrow3^4< 3^{-2+3\times n}\le3^{10}\)
\(\Rightarrow4< -2+3\times n\le10\)
\(\Rightarrow-2+3\times n\in\left\{5;6;7;8;9;10\right\}\)
Ta có bảng sau:
| \(-2+3\times n\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) |
| \(3\times n\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
| \(n\) | \(2,\left(3\right)\) | \(2,\left(6\right)\) | \(3\) | \(3,\left(3\right)\) | \(3,\left(6\right)\) | \(4\) |
mà \(n\in Z\)
\(\Rightarrow n\in\left\{3;4\right\}\)
Vậy \(n\in\left\{3;4\right\}\) thì thỏa mãn đề bài.